LALPulsar  6.1.0.1-b72065a
Bibliography
[1]

W. G. Anderson, P. R. Brady, J. D. Creighton, and É. É. Flanagan. Excess power statistic for detection of burst sources of gravitational radiation. Phys. Rev. D, 63(4):042003, February 2001.

[2]

Colla Alberto D'Antonio Sabrina Frasca Sergio Palomba Cristiano Astone, Pia. Method for all-sky searches of continuous gravitational wave signals using the frequency-Hough transform. Phys. Rev. D, 90(042002), August 2014.

[3]

R. Blandford and S. A. Teukolsky. Arrival-time analysis for a pulsar in a binary system.. Astrophys. J., 205:580–591, April 1976.

[4]

Bruce Allen and Evan Goetz and David Keitel and Michael Landry and Gregory Mendell and Reinhard Prix and Keith Riles and Karl Wette. SFT Data Format Version 2–3 Specification. Technical Report T040164-v2, LIGO, 2022.

[5]

Deruelle N. Damour, T. General relativistic celestial mechanics of binary systems. I. The post-newtonian motion. Annales de l'institut Henri Poincaré (A) Physique théorique, 43(1):107–132, 1985.

[6]

Sanjeev Dhurandhar, Badri Krishnan, Himan Mukhopadhyay, and John T. Whelan. Cross-correlation search for periodic gravitational waves. Physical Review D, 77:082001, 2008.

[7]

L. Dunn, P. Clearwater, A. Melatos, and K. Wette. Graphics processing unit implementation of the F-statistic for continuous gravitational wave searches. Classical and Quantum Gravity, 39(4):045003, January 2022.

[8]

R. J. Dupuis and G. Woan. Bayesian estimation of pulsar parameters from gravitational wave data. Phys. Rev. D, 72(10):102002, November 2005.

[9]

Piotr Jaranowski, Andrzej Królak, and Bernard F. Schutz. Data analysis of gravitational-wave signals from spinning neutron stars: The signal and its detection. Phys. Rev. D, 58:063001, Aug 1998.

[10]

D. I. Jones. Gravitational wave emission from rotating superfluid neutron stars. Mon. Not. R. Astron. Soc., 402:2503–2519, March 2010.

[11]

D. I. Jones. Parameter choices and ranges for continuous gravitational wave searches for steadily spinning neutron stars. arXiv:1501.05832, January 2015.

[12]

D. I. Jones. Parameter choices and ranges for continuous gravitational wave searches for steadily spinning neutron stars. Mon. Not. R. Astron. Soc., 453:53–66, October 2015.

[13]

D. Keitel, R. Prix, M. A. Papa, P. Leaci, and M. Siddiqi. Search for continuous gravitational waves: Improving robustness versus instrumental artifacts. Phys. Rev . D, 89(6):064023, March 2014.

[14]

D. Keitel. Robust semicoherent searches for continuous gravitational waves with noise and signal models including hours to days long transients. Phys. Rev. D, 93(8):084024, April 2016.

[15]

C. Lange, F. Camilo, N. Wex, M. Kramer, D. C. Backer, A. G. Lyne, and O. Doroshenko. Precision timing measurements of PSR J1012+5307. Mon. Not. R. Astron. Soc., 326:274–282, September 2001.

[16]

Paola Leaci and Reinhard Prix. Directed searches for continuous gravitational waves from binary systems: Parameter-space metrics and optimal Scorpius X-1 sensitivity. Phys. Rev. D, 91:102003, May 2015.

[17]

Atsushi Nishizawa, Atsushi Taruya, Kazuhiro Hayama, Seiji Kawamura, and Masa-aki Sakagami. Probing nontensorial polarizations of stochastic gravitational-wave backgrounds with ground-based laser interferometers. Phys. Rev. D, 79:082002, Apr 2009.

[18]

M.A. Papa, B.F. Schutz, and A.M. Sintes. Searching for continuous gravitational wave signals: the hierarchical Hough transform algorithm. In V. Ferrari, J.C. Miller, and L. Rezzolla, editors, Gravitational waves: A challenge to theoretical astrophysics, volume 3 of ICTP Lecture Notes Series, page 431, Italy, 2001.

[19]

Matthew Pitkin, Maximiliano Isi, John Veitch, and Graham Woan. A nested sampling code for targeted searches for continuous gravitational waves from pulsars. arXiv:1705.08978, May 2017.

[20]

R. Prix. Search for continuous gravitational waves: Metric of the multidetector F-statistic. Phys. Rev. D, 75(2):023004, January 2007.

[21]

Reinhard Prix. The F-statistic and its implementation in ComputeFstatistic_v2. LIGO Technical Document LIGO-T0900149-v5, 2011.

[22]

Reinhard Prix. in preparation, 2022.

[23]

J. D. Scargle. Studies in Astronomical Time Series Analysis. V. Bayesian Blocks, a New Method to Analyze Structure in Photon Counting Data. Astrophys. J., 504:405, September 1998.

[24]

B.F. Schutz and M.A. Papa. End-to-end algorithm for hierarchical area searches forlong-duration GW sources for GEO 600. In J. Tran Thanh Van, J. Dumarchez, S. Reynaud, C. Salomon, S. Thorsett, and J.Y. Vinet, editors, Gravitational waves and experimental gravity, Hanoi, 1999. World Publishers.

[25]

P. Shawhan, S. Anderson, K. Blackburn, P. Ehrens, A. Ivanov, A. Lazzarini, B. Mours, D. Sigg, and J. Zweizig. Naming Convention for Frame Files which are to be Processed by LDAS. Technical Report T010150-x0, LIGO, 2001. https://dcc.ligo.org/LIGO-T010150-x0/public.

[26]

John Skilling. Nested sampling for general Bayesian computation. Bayesian Analysis, 1(4):833, 2006.

[27]

J. H. Taylor and J. M. Weisberg. Further experimental tests of relativistic gravity using the binary pulsar PSR 1913+16. Astrophys. J., 345:434–450, October 1989.

[28]

J. Veitch and A. Vecchio. Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network. Phys. Rev. D, 81(6):062003, March 2010.

[29]

K. Wette and R. Prix. Flat parameter-space metric for all-sky searches for gravitational-wave pulsars. Physical Review D, 88(12):123005, December 2013.

[30]

K. Wette. Gravitational waves from accreting neutron stars and Cassiopeia A. PhD thesis, The Australian National University, 2009.

[31]

K. Wette. Lattice template placement for coherent all-sky searches for gravitational-wave pulsars. Physical Review D, 90:122010, Dec 2014.

[32]

K. Wette. Parameter-space metric for all-sky semicoherent searches for gravitational-wave pulsars. Physical Review D, 92(8):082003, October 2015.

[33]

N. Wex. A timing formula for main-sequence star binary pulsars. Mon. Not. R. Astron. Soc., 298:67–77, July 1998.

[34]

John T. Whelan, Santosh Sundaresan, Yuanhao Zhang, and Prabath Peiris. Model-based cross-correlation search for gravitational waves from Scorpius X-1. Physical Review D, 91:102005, 2015.

[35]

Clifford M. Will and Alan G. Wiseman. Gravitational radiation from compact binary systems: Gravitational waveforms and energy loss to second post-Newtonian order. Phys. Rev. D, 54:4813–4848, Oct 1996.

[36]

Peter R. Williams and Bernard F. Schutz. An Efficient matched filtering algorithm for the detection of continuous gravitational wave signals. In S. Meshkov, editor, Gravitational waves. Proceedings, 3rd Edoardo Amaldi Conference, Pasadena, USA, July 12-16, 1999, 2000.

[37]

M. Yu, R. N. Manchester, G. Hobbs, S. Johnston, V. M. Kaspi, M. Keith, A. G. Lyne, G. J. Qiao, V. Ravi, J. M. Sarkissian, R. Shannon, and R. X. Xu. Detection of 107 glitches in 36 southern pulsars. Mon. Not. R. Astron. Soc., 429(1):688–724, February 2013.