LALSimulation  5.4.0.1-89842e6
Bibliography
[1]

P. Ajith. Addressing the spin question in gravitational-wave searches: Waveform templates for inspiralling compact binaries with nonprecessing spins. Phys. Rev., D84:084037, 2011.

[2]

Jonathan Blackman, Scott E. Field, Mark A. Scheel, Chad R. Galley, Christian D. Ott, Michael Boyle, Lawrence E. Kidder, Harald P. Pfeiffer, and Béla Szilágyi. Numerical relativity waveform surrogate model for generically precessing binary black hole mergers. Phys. Rev. D, 96:024058, Jul 2017.

[3]

Alessandra Buonanno, Yanbei Chen, and Michele Vallisneri. Detection template families for gravitational waves from the final stages of binary–black-hole inspirals: Nonspinning case. Phys. Rev. D, 67:024016, Jan 2003.

[4]

Alessandra Buonanno, Yanbei Chen, and Michele Vallisneri. Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit. Phys. Rev. D, 67:104025, May 2003.

[5]

Alessandra Buonanno, Bala Iyer, Evan Ochsner, Yi Pan, and B. S. Sathyaprakash. Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors. Phys. Rev., D80:084043, 2009.

[6]

Thibault Damour, Bala R. Iyer, and B. S. Sathyaprakash. Frequency-domain P-approximant filters for time-truncated inspiral gravitational wave signals from compact binaries. Phys. Rev. D, 62:084036, Sep 2000.

[7]

Thibault Damour, Bala R. Iyer, and B. S. Sathyaprakash. Comparison of search templates for gravitational waves from binary inspiral. Phys. Rev. D, 63:044023, Jan 2001.

[8]

Tim Dietrich, Anuradha Samajdar, Sebastian Khan, Nathan K. Johnson-McDaniel, Reetika Dudi, and Wolfgang Tichy. Improving the NRTidal model for binary neutron star systems. Phys. Rev., D100(4):044003, 2019.

[9]

H. Grote and LIGO Scientific Collaboration. The GEO 600 status. Classical and Quantum Gravity, 27(8):084003, April 2010.

[10]

Sascha Husa, Sebastian Khan, Mark Hannam, Michael Pürrer, Frank Ohme, Xisco Jimenez Forteza, and Alejandro Bohe. Frequency-domain gravitational waves from non-precessing black-hole binaries. I. New numerical waveforms and anatomy of the signal. 2015.

[11]

Xisco Jiménez-Forteza, David Keitel, Sascha Husa, Mark Hannam, Sebastian Khan, and Michael Pürrer. Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy. Phys. Rev., D95(6):064024, 2017.

[12]

Sebastian Khan, Sascha Husa, Mark Hannam, Frank Ohme, Michael Pürrer, Xisco Jimenez Forteza, and Alejandro Bohe. Frequency-domain gravitational waves from non-precessing black-hole binaries. II. A phenomenological model for the advanced detector era. 2015.

[13]

Antoine Klein, Neil Cornish, and Nicolás Yunes. Fast Frequency-domain Waveforms for Spin-Precessing Binary Inspirals. Phys. Rev., D90:124029, 2014.

[14]

Benjamin D. Lackey, Koutarou Kyutoku, Masaru Shibata, Patrick R. Brady, and John L. Friedman. Extracting equation of state parameters from black hole-neutron star mergers: aligned-spin black holes and a preliminary waveform model. Phys. Rev., D89(4):043009, 2014.

[15]

A. Manzotti and A. Dietz. Prospects for early localization of gravitational-wave signals from compact binary coalescences with advanced detectors. ArXiv e-prints, February 2012.

[16]

Francesco Pannarale, Emanuele Berti, Koutarou Kyutoku, Benjamin D. Lackey, and Masaru Shibata. Aligned spin neutron star-black hole mergers: a gravitational waveform amplitude model. Phys. Rev., D92(8):084050, 2015.

[17]

Tetsuro Yamamoto, Masaru Shibata, and Keisuke Taniguchi. Simulating coalescing compact binaries by a new code SACRA. Phys. Rev., D78:064054, 2008.

[18]

Francesco Zappa, Sebastiano Bernuzzi, Francesco Pannarale, Michela Mapelli, and Nicola Giacobbo. Black-Hole Remnants from Black-Hole–Neutron-Star Mergers. Phys. Rev. Lett., 123(4):041102, 2019.