LAL  7.2.4.1-d5ae9e8
antenna.py
Go to the documentation of this file.
1 # Copyright (C) 2018 Matthew Pitkin
2 #
3 # This program is free software; you can redistribute it and/or modify it
4 # under the terms of the GNU General Public License as published by the
5 # Free Software Foundation; either version 2 of the License, or (at your
6 # option) any later version.
7 #
8 # This program is distributed in the hope that it will be useful, but
9 # WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
11 # Public License for more details.
12 #
13 # You should have received a copy of the GNU General Public License along
14 # with this program; if not, write to the Free Software Foundation, Inc.,
15 # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
16 
17 
18 ## \defgroup lal_py_antenna Antenna
19 ## \ingroup lal_python
20 """This module provides a Python class for generating antenna response
21 functions. By default the class uses its own implementation of the antenna
22 response functions, but it also provides a wrapper to the equivalent
23 functions within LAL.
24 """
25 # \author Matthew Pitkin (<matthew.pitkin@ligo.org>)
26 #
27 # ### Synopsis ###
28 #
29 # ~~~
30 # from lal import antenna
31 # ~~~
32 #
33 # ### Examples ###
34 #
35 # A simple example of just getting the antenna response for LHO at a single
36 # time for a single sky position and polarization angle would be:
37 #
38 # \code
39 # from lal import antenna
40 # ra = 1.2 # right ascension in radians
41 # dec = -0.3 # declination in radians
42 # psi = 1.5 # polarization angle in radians
43 # times = 1000000000. # time (GPS seconds)
44 # resp = antenna.AntennaResponse('H1', ra, dec, psi=psi, times=times)
45 # print(resp.plus)
46 # \endcode
47 #
48 # To produce plots of the antenna responses over the sky for the different
49 # polarizations, assuming a detector at the North Pole, one could use:
50 #
51 # \code
52 # import numpy as np
53 # import lal
54 # from lal.antenna import AntennaResponse
55 # from mpl_toolkits.mplot3d import Axes3D
56 # import matplotlib.pyplot as pl
57 #
58 # # set a LALFrDetector object for the North Pole
59 # frdt = lal.FrDetector()
60 #
61 # frdt.name = 'NORTHPOLE'
62 # frdt.prefix = 'N1'
63 # frdt.vertexLongitudeRadians = 0.
64 # frdt.vertexLatitudeRadians = np.pi/2.
65 # frdt.vertexElevation = 0.
66 # frdt.xArmAltitudeRadians = 0.
67 # frdt.xArmAzimuthRadians = 0.
68 # frdt.yArmAltitudeRadians = 0.
69 # frdt.yArmAzimuthRadians = np.pi/2. # y-arm 90 degs from x-arm
70 # frdt.xArmMidpoint = 2000. # 4km long arms
71 # frdt.yArmMidpoint = 2000.
72 #
73 # # create lal.Detector object
74 # det = lal.Detector()
75 # lal.CreateDetector(det, frdt, lal.LALDETECTORTYPE_IFODIFF)
76 #
77 # # create RA/dec grids uniform on sphere
78 # ras = np.linspace(0, 2.*np.pi, 150)
79 # decs = np.arcsin(np.linspace(-1, 1, 150))
80 #
81 # # create antenna response on the sky grid
82 # resp = AntennaResponse(det, ras, decs, psi=0.0, times=900000000.0, vector=True,
83 # scalar=True)
84 #
85 # # get equatorial to cartesian factors
86 # xfac = np.cos(resp.dec_mesh)*np.cos(resp.ra_mesh)
87 # yfac = np.cos(resp.dec_mesh)*np.sin(resp.ra_mesh)
88 # zfac = np.sin(resp.dec_mesh)
89 #
90 # fig = pl.figure(figsize=(12, 7))
91 #
92 # for i, mode in enumerate(['plus', 'x', 'b', 'cross', 'y', 'l']):
93 # r = np.abs(resp.response[mode]) # get absolute values of response
94 #
95 # # convert from equatorial coordinates to cartesian
96 # X, Y, Z = r*xfac, r*yfac, r*zfac
97 #
98 # ax = fig.add_subplot(2, 3, i+1, projection='3d')
99 # ax.plot_surface(X, Y, Z, cmap=pl.cm.viridis, linewidth=0, rstride=1, cstride=1)
100 # ax.set_aspect('equal')
101 # ax.set_title(mode)
102 #
103 # fig.tight_layout()
104 #
105 # pl.show()
106 # \endcode
107 #
108 # which will display:
109 # <img src=""/>
110 #
111 # <!--
112 # To produce the above jpeg byte string for the image I have used:
113 # from io import BytesIO
114 # import base64
115 # figfile = BytesIO()
116 # fig.savefig(figfile, dpi=50, format='jpg')
117 # figfile.seek(0) # rewind to beginning of file
118 # figdata_jpg = base64.b64encode(figfile.getvalue()).decode('utf8')
119 # -->
120 ## @{
121 
122 
123 import numpy as np
124 from six import string_types
125 
126 
127 # import SWIG-wrapped LAL
128 from lal import (LALDetectorIndexLHODIFF, LALDetectorIndexLLODIFF,
129  LALDetectorIndexGEO600DIFF, LALDetectorIndexVIRGODIFF,
130  LALDetectorIndexTAMA300DIFF, LALDetectorIndexKAGRADIFF,
131  LALDetectorIndexLIODIFF, LALDetectorIndexE1DIFF,
132  LALDetectorIndexE2DIFF, LALDetectorIndexE3DIFF,
133  CachedDetectors, LIGOTimeGPS, GreenwichMeanSiderealTime,
134  ComputeDetAMResponse, ComputeDetAMResponseExtraModes,
135  DAYSID_SI, Detector, TranslateHMStoRAD, TranslateDMStoRAD)
136 
137 from . import git_version
138 
139 __author__ = "Matthew Pitkin <matthew.pitkin@ligo.org>"
140 __version__ = git_version.verbose_msg
141 __date__ = git_version.date
142 
143 
144 ## mapping between detector names and LALCachedDetectors
145 DETMAP = {'H1': LALDetectorIndexLHODIFF,
146  'H2': LALDetectorIndexLHODIFF,
147  'LHO': LALDetectorIndexLHODIFF,
148  'L1': LALDetectorIndexLLODIFF,
149  'LLO': LALDetectorIndexLLODIFF,
150  'G1': LALDetectorIndexGEO600DIFF,
151  'GEO': LALDetectorIndexGEO600DIFF,
152  'GEO600': LALDetectorIndexGEO600DIFF,
153  'V1': LALDetectorIndexVIRGODIFF,
154  'VIRGO': LALDetectorIndexVIRGODIFF,
155  'T1': LALDetectorIndexTAMA300DIFF,
156  'TAMA': LALDetectorIndexTAMA300DIFF,
157  'TAMA300': LALDetectorIndexTAMA300DIFF,
158  'K1': LALDetectorIndexKAGRADIFF,
159  'KAGRA': LALDetectorIndexKAGRADIFF,
160  'LCGT': LALDetectorIndexKAGRADIFF,
161  'I1': LALDetectorIndexLIODIFF,
162  'LIO': LALDetectorIndexLIODIFF,
163  'E1': LALDetectorIndexE1DIFF,
164  'E2': LALDetectorIndexE2DIFF,
165  'E3': LALDetectorIndexE3DIFF}
166 
167 
168 ## The ranges of variables required for the antenna response (for look-up table generation)
169 VAR_RANGES = {'psi': [0., 2.*np.pi],
170  'time': [0., DAYSID_SI],
171  'ra': [0., 2.*np.pi],
172  'dec': [-1., 1.]} # this range is actually in sin(dec)
173 
174 
175 class AntennaResponse(object):
176  def __init__(self, detector, ra, dec, psi=0., times=None, tensor=True,
177  vector=False, scalar=False, use_lal=False, lookup=False,
178  lookuppair=None, bins1=100, bins2=100):
179  """
180  Calculate the long-wavelength limit antenna response functions for a given
181  ground-based gravitational wave detector. The response can include tensor,
182  vector, and scalar modes.
183 
184  @param detector: (str) a valid detector name (e.g., 'H1') or
185  lal.Detector object.
186  @param ra: (array_like) the right ascension of the source in radians,
187  or a string of the format 'hh:mm:ss.s'.
188  @param dec: (array_like) the declination of the source in radians, or a
189  string of the format 'dd:mm:ss.s'.
190  @param psi: (array_like) the polarization angle in radians. Defaults to
191  zero.
192  @param times: (array_like) an array of GPS time values at which to
193  calculate the response function.
194  @param tensor: (bool) set to calculate and store the tensor
195  polarization components (plus and cross). Defaults to True.
196  @param vector: (bool) set to calculate and store the vector
197  polarization components ("x" and "y"). Defaults to False.
198  @param scalar: (bool) set to calculate and store the scalar
199  polarization components (longitudinal and breathing). Defaults to
200  False.
201  @param use_lal: (bool) set to internally use the
202  XLALComputeDetAMResponse() and XLALComputeDetAMResponseExtraModes()
203  functions. Defaults to False.
204  @param lookup: (bool) set to generate and use a look-up table in a pair
205  of parameters for computing the antenna responses. Defaults to
206  False. If using the look-up table, the arrays of values being
207  "looked-up" must be in ascending order.
208  @param lookuppair: (list, tuple) a list of the two parameters that will
209  be used in the look-up table interpolation. Defaults to
210  <tt>['psi', 'time']</tt> (allowed values are <tt>'ra'</tt>,
211  <tt>'dec'</tt>, <tt>'psi'</tt>, or <tt>'time'</tt>)
212  @param bins1: (int) the number of bins in the grid in the first look-up
213  table parameter. Defaults to 100.
214  @param bins2: (int) the number of bins in the grid in the second
215  look-up table parameter. Defaults to 100.
216 
217  Example usage for tensor polarizations:
218  ~~~
219  >>> from lal.antenna import AntennaResponse
220  >>> # compute tensor response for a single time
221  >>> resp = AntennaResponse('H1', ra=1.2, dec=-0.3, psi=2.9,
222  ...times=1000000000)
223  >>> print('Fplus: {}'.format(resp.plus))
224  Fplus: [0.32427018]
225  >>> print('Fcross: {}'.format(resp.cross))
226  Fcross: [-0.79809163]
227  >>> # re-use class to get response at multiple new times
228  >>> resp.compute_response([1010101010., 1234567890.])
229  >>> print('Fplus: {}'.format(resp.plus))
230  Fplus: [ 0.09498567 -0.45495654]
231  >>> print('Fcross: {}'.format(resp.cross))
232  Fcross: [0.1706959 0.21690418]
233  ~~~
234 
235  Example usage for tensor, vector and scalar polarizations (at a series
236  of times):
237  ~~~
238  >>> import numpy as np
239  >>> times = np.linspace(1000000000.0, 1000086340.0, 1440)
240  >>> resp = AntennaResponse('H1', ra=1.2, dec=-0.3, psi=2.9,
241  ...scalar=True, vector=True, times=times)
242  >>> resp.plus
243  array([0.32427018, 0.32805983, 0.3318344 , ..., 0.32780195, 0.33157755,
244  0.33533786])
245  >>> resp.cross
246  array([-0.79809163, -0.79607858, -0.79404097, ..., -0.7962166 ,
247  -0.79418066, -0.79212028])
248  >>> resp.x # vector "x" polarization
249  array([-0.46915186, -0.46773594, -0.46627224, ..., -0.46783399,
250  -0.46637354, -0.46486538])
251  >>> resp.y # vector "y" polarization
252  array([-0.17075718, -0.17475991, -0.17875012, ..., -0.17448742,
253  -0.17847849, -0.18245689])
254  >>> resp.b # scalar "breathing" mode
255  array([0.05365678, 0.05573073, 0.05780282, ..., 0.05558939, 0.05766162,
256  0.05973181])
257  >>> resp.l # scalar "longitudinal mode"
258  array([-0.05365678, -0.05573073, -0.05780282, ..., -0.05558939,
259  -0.05766162, -0.05973181])
260  ~~~
261  """
262 
263  # response function dictionary
264  self.responseresponse = {'plus': None, # tensor plus polarization
265  'cross': None, # tensor cross polarization
266  'x': None, # vector "x" polarization
267  'y': None, # vector "y" polarization
268  'b': None, # scalar breathing mode polarizarion
269  'l': None} # scalar longitudinal mode polarization
270 
271  # parameter names and order in arrays
272  self.parametersparameters = ['ra', 'dec', 'psi', 'time']
273 
274  # set values
275  self.detectordetectordetectordetector = detector
276  self.rararara = ra
277  self.decdecdecdec = dec
278  self.psipsipsipsi = psi
279  self.timestimestimestimes = times
280 
281  # polarization modes
282  self.tensortensortensortensor = tensor
283  self.vectorvectorvectorvector = vector
284  self.scalarscalarscalarscalar = scalar
285 
286  # set whether to use internal LAL functions
287  self.use_laluse_laluse_laluse_lal = use_lal
288 
289  # set whether to allocate and use a look-up table
290  if lookup:
291  if lookuppair is None: # use default pair
292  self.set_lookup_pairset_lookup_pair(bins1=bins1, bins2=bins2)
293  else:
294  self.set_lookup_pairset_lookup_pair(pair=lookuppair, bins1=bins1, bins2=bins2)
295  self.lookuplookuplookuplookup = lookup
296 
297  # calculate antenna responses
298  self.compute_responsecompute_response()
299 
300  @property
301  def detector(self):
302  return self._detector_detector
303 
304  @detector.setter
305  def detector(self, det):
306  """
307  Set the detector for which to calculate the antenna response.
308 
309  @param det: (str) a valid detector name.
310  """
311 
312  if isinstance(det, Detector):
313  self._detector_detector = det.frDetector.prefix
314  self.laldetectorlaldetectorlaldetectorlaldetector = det
315  elif isinstance(det, string_types):
316  if det.upper() not in DETMAP.keys():
317  raise ValueError("Detector is not a valid detector name")
318 
319  self._detector_detector = det.upper()
320 
321  # set the LAL detector object
322  self.laldetectorlaldetectorlaldetectorlaldetector = self.detectordetectordetectordetector
323  else:
324  raise TypeError("Detector must be a string or lal.Detector object")
325 
326  @property
327  def laldetector(self):
328  return self._laldetector_laldetector
329 
330  @laldetector.setter
331  def laldetector(self, det):
332  """
333  Set the lal.Detector.
334 
335  @param det: (str) a valid detector name.
336  """
337 
338  if isinstance(det, Detector):
339  self._laldetector_laldetector = det.response
340  elif isinstance(det, string_types):
341  try:
342  detector = DETMAP[det.upper()]
343  except KeyError:
344  raise KeyError("Key {} is not a valid detector name.".format(det))
345 
346  self._laldetector_laldetector = CachedDetectors[detector].response
347  else:
348  raise TypeError("Detector must be a string or lal.Detector object")
349 
350  @property
351  def ra(self):
352  return self._ra_ra
353 
354  @ra.setter
355  def ra(self, raval):
356  """
357  Set the right ascension.
358  """
359 
360  if raval is None:
361  self._ra_ra = None
362  return
363  elif isinstance(raval, float) or isinstance(raval, int):
364  self._ra_ra = np.array([raval], dtype='float64')
365  elif isinstance(raval, list) or isinstance(raval, np.ndarray):
366  self._ra_ra = np.copy(raval).astype('float64')
367  elif isinstance(raval, string_types):
368  try:
369  rarad = TranslateHMStoRAD(raval)
370  self._ra_ra = np.array([rarad], dtype='float64')
371  except RuntimeError:
372  raise ValueError("Could not convert '{}' to a right "
373  "ascension".format(raval))
374  else:
375  raise TypeError("Right ascension must be an array")
376 
377  @property
378  def dec(self):
379  return self._dec_dec
380 
381  @property
382  def costheta(self):
383  return self._costheta_costheta
384 
385  @property
386  def sintheta(self):
387  return self._sintheta_sintheta
388 
389  @dec.setter
390  def dec(self, decval):
391  """
392  Set the declination.
393  """
394 
395  if decval is None:
396  self._dec_dec = None
397  self._costheta_costheta = None
398  self._sintheta_sintheta = None
399  return
400  elif isinstance(decval, float) or isinstance(decval, int):
401  self._dec_dec = np.array([decval], dtype='float64')
402  elif isinstance(decval, list) or isinstance(decval, np.ndarray):
403  self._dec_dec = np.copy(decval).astype('float64')
404  elif isinstance(decval, string_types):
405  try:
406  decrad = TranslateDMStoRAD(decval)
407  self._dec_dec = np.array([decrad], dtype='float64')
408  except RuntimeError:
409  raise ValueError("Could not convert '{}' to a "
410  "declination".format(decval))
411  else:
412  raise TypeError("Declination must be an array")
413 
414  self._costheta_costheta = np.cos(0.5*np.pi - self._dec_dec)
415  self._sintheta_sintheta = np.sin(0.5*np.pi - self._dec_dec)
416 
417  @property
418  def psi(self):
419  return self._psi_psi
420 
421  @property
422  def cospsi(self):
423  return self._cospsi_cospsi
424 
425  @property
426  def sinpsi(self):
427  return self._sinpsi_sinpsi
428 
429  @psi.setter
430  def psi(self, psival):
431  """
432  Set the value of the gravitational wave polarization angle psi.
433 
434  @param psival: (float) the polarization angle (radians)
435  """
436 
437  if psival is None:
438  self._psi_psi = None
439  self._cospsi_cospsi = None
440  self._sinpsi_sinpsi = None
441  return
442  elif isinstance(psival, float) or isinstance(psival, int):
443  self._psi_psi = np.array([psival], dtype='float64')
444  elif isinstance(psival, list) or isinstance(psival, np.ndarray):
445  self._psi_psi = np.copy(psival).astype('float64')
446  else:
447  raise TypeError("Polarization must be an array")
448 
449  self._psi_psi = np.mod(self._psi_psi, 2.*np.pi) # wrap at 0 and 2pi
450  self._cospsi_cospsi = np.cos(self._psi_psi)
451  self._sinpsi_sinpsi = np.sin(self._psi_psi)
452 
453  @property
454  def times(self):
455  return self._times_times
456 
457  @property
458  def gmsttimes(self):
459  try:
460  return self._gmsttimes_gmsttimes
461  except AttributeError:
462  return None
463 
464  @times.setter
465  def times(self, timearr):
466  """
467  Set array of times and GPS times.
468  """
469 
470  # check if times is just a float or int, and if so convert into an array
471  if timearr is None:
472  self._times_times = None
473  self._gmsttimes_gmsttimes = None
474  return
475  elif isinstance(timearr, float) or isinstance(timearr, int):
476  self._times_times = np.array([timearr], dtype='float64')
477  elif isinstance(timearr, list) or isinstance(timearr, np.ndarray):
478  self._times_times = np.copy(timearr).astype('float64')
479  else:
480  raise TypeError("Times must be an array")
481 
482  # get an array of GMSTs
483  self._gmsttimes_gmsttimes = np.ones_like(self._times_times) * np.nan # Greenwich Mean Siderial time (radians)
484  for i, time in enumerate(self._times_times):
485  gps = LIGOTimeGPS(time) # GPS time
486  gmstrad = GreenwichMeanSiderealTime(gps)
487  self._gmsttimes_gmsttimes[i] = gmstrad
488 
489  @property
490  def shape(self):
491  try:
492  return self._ra_mesh_ra_mesh.shape
493  except Exception:
494  if (self.rararara is not None and self.decdecdecdec is not None and
495  self.psipsipsipsi is not None and self.timestimestimestimes is not None):
496  return (len(self.rararara), len(self.decdecdecdec), len(self.psipsipsipsi),
497  len(self.timestimestimestimes))
498  else:
499  return ()
500 
501  @property
502  def cosphi(self):
503  return self._cosphi
504 
505  @property
506  def sinphi(self):
507  return self._sinphi
508 
509  @property
510  def tensor(self):
511  return self._tensor_tensor
512 
513  @tensor.setter
514  def tensor(self, tensorval):
515  """
516  Set whether to include tensor polarizations.
517  """
518 
519  if not isinstance(tensorval, bool):
520  raise TypeError("Must be boolean value")
521 
522  self._tensor_tensor = tensorval
523 
524  @property
525  def vector(self):
526  return self._vector_vector
527 
528  @vector.setter
529  def vector(self, vectorval):
530  """
531  Set whether to include vector polarizations.
532  """
533 
534  if not isinstance(vectorval, bool):
535  raise TypeError("Must be boolean value")
536 
537  self._vector_vector = vectorval
538 
539  @property
540  def scalar(self):
541  return self._scalar_scalar
542 
543  @scalar.setter
544  def scalar(self, scalarval):
545  """
546  Set whether to include scalar polarizations.
547  """
548 
549  if not isinstance(scalarval, bool):
550  raise TypeError("Must be boolean value")
551 
552  self._scalar_scalar = scalarval
553 
554  @property
555  def use_lal(self):
556  return self._use_lal_use_lal
557 
558  @use_lal.setter
559  def use_lal(self, val):
560  """
561  Set whether to use LAL antenna response functions.
562  """
563 
564  if not isinstance(val, bool):
565  raise TypeError("Must be a boolean value")
566 
567  self._use_lal_use_lal = val
568 
569  @property
570  def lookup_pair(self):
571  return self._lookup_pair_lookup_pair
572 
573  @lookup_pair.setter
574  def lookup_pair(self, pair):
575  if not isinstance(pair, (list, tuple)):
576  raise TypeError('Pair must be a list or tuple')
577 
578  if len(pair) != 2:
579  raise ValueError('Pair must only contain two values')
580 
581  for val in pair:
582  if val.lower() not in self.parametersparameters:
583  raise ValueError('Parameter {} in pair not '
584  'recognized'.format(val))
585 
586  self._lookup_pair_lookup_pair = [val.lower() for val in pair]
587 
588  # make sure pair is in same order as parameters
589  self._lookup_pair_lookup_pair = [val for val in self.parametersparameters
590  if val in self._lookup_pair_lookup_pair]
591 
592  # set parameters that are not in the look-up pair
593  self._not_lookup_pair_not_lookup_pair = [val.lower() for val in self.parametersparameters
594  if val not in self._lookup_pair_lookup_pair]
595  self._not_lookup_pair_idx_not_lookup_pair_idx = [self.parametersparameters.index(val)
596  for val in self._not_lookup_pair_not_lookup_pair]
597 
598  def set_lookup_pair(self, pair=['psi', 'time'], bins1=100, bins2=100):
599  """
600  Set the pair of parameters to use for the look-up table.
601  """
602 
603  self.lookup_pairlookup_pairlookup_pairlookup_pair = pair
604  self._lookup_pair_dict_lookup_pair_dict = {}
605 
606  for val, nbins in zip(pair, [bins1, bins2]):
607  if not isinstance(nbins, int):
608  raise TypeError("Value must be an integer")
609 
610  if nbins < 2:
611  raise ValueError("There must be at least 2 bins")
612 
613  self._lookup_pair_dict_lookup_pair_dict[val] = {}
614 
615  vrange = VAR_RANGES[val]
616 
617  # set array of bins
618  if val == 'dec':
619  # range is in sin(dec) to give uniform grid on sky sphere, so
620  # convert into dec
621  vararray = np.arcsin(np.linspace(vrange[0], vrange[1], nbins))
622  else:
623  vararray = np.linspace(vrange[0], vrange[1], nbins)
624 
625  self._lookup_pair_dict_lookup_pair_dict[val]['array'] = vararray
626  self._lookup_pair_dict_lookup_pair_dict[val]['nbins'] = nbins
627 
628  @property
629  def bins1(self):
630  return self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[0]]['nbins']
631 
632  @property
633  def array1(self):
634  return self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[0]]['array']
635 
636  @property
637  def bins2(self):
638  return self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[1]]['nbins']
639 
640  @property
641  def array2(self):
642  return self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[1]]['array']
643 
644  @property
645  def lookup(self):
646  return self._lookup_lookup
647 
648  @lookup.setter
649  def lookup(self, val):
650  """
651  Set the 2d look-up table.
652  """
653 
654  self._timeepoch_timeepoch = 1000000000. # a GPS epoch
655 
656  if not isinstance(val, bool):
657  raise TypeError("Value must be a boolean")
658 
659  self._lookup_lookup = False # set to False so look-up table can be calculated
660 
661  # set the look-up table
662  if val:
663  try:
664  from scipy.interpolate import RectBivariateSpline
665  except ImportError:
666  raise ImportError("Cannot import scipy")
667 
668  curra = self.rararara # save current RA value
669  curdec = self.decdecdecdec # save current dec value
670  curpsi = self.psipsipsipsi # save current psi value
671  try:
672  curtimes = self.timestimestimestimes # save current times
673  except AttributeError:
674  raise AttributeError("A time must be set for the look-up table")
675 
676  if 'psi' in self.lookup_pairlookup_pairlookup_pairlookup_pair:
677  self.psipsipsipsi = self._lookup_pair_dict_lookup_pair_dict['psi']['array']
678  if 'time' in self.lookup_pairlookup_pairlookup_pairlookup_pair:
679  self.timestimestimestimes = (self._timeepoch_timeepoch +
680  self._lookup_pair_dict_lookup_pair_dict['time']['array'])
681  if 'ra' in self.lookup_pairlookup_pairlookup_pairlookup_pair:
682  self.rararara = self._lookup_pair_dict_lookup_pair_dict['ra']['array']
683  if 'dec' in self.lookup_pairlookup_pairlookup_pairlookup_pair:
684  self.decdecdecdec = self._lookup_pair_dict_lookup_pair_dict['dec']['array']
685 
686  self._not_lookup_pair_lens_not_lookup_pair_lens = [] # lengths of the non-look-up table values
687  for val in self._not_lookup_pair_not_lookup_pair:
688  if val == 'ra':
689  self._not_lookup_pair_lens_not_lookup_pair_lens.append(len(curra))
690  if val == 'dec':
691  self._not_lookup_pair_lens_not_lookup_pair_lens.append(len(curdec))
692  if val == 'psi':
693  self._not_lookup_pair_lens_not_lookup_pair_lens.append(len(curpsi))
694  if val in 'time':
695  self._not_lookup_pair_lens_not_lookup_pair_lens.append(len(curtimes))
696 
697  # set look-up table functions
698  self._lookup_func_lookup_func = {}
699  if self.tensortensortensortensor:
700  self._lookup_func_lookup_func['plus'] = np.empty(self._not_lookup_pair_lens_not_lookup_pair_lens, dtype=object)
701  self._lookup_func_lookup_func['cross'] = np.empty(self._not_lookup_pair_lens_not_lookup_pair_lens, dtype=object)
702 
703  if self.vectorvectorvectorvector:
704  self._lookup_func_lookup_func['x'] = np.empty(self._not_lookup_pair_lens_not_lookup_pair_lens, dtype=object)
705  self._lookup_func_lookup_func['y'] = np.empty(self._not_lookup_pair_lens_not_lookup_pair_lens, dtype=object)
706 
707  if self.scalarscalarscalarscalar:
708  self._lookup_func_lookup_func['b'] = np.empty(self._not_lookup_pair_lens_not_lookup_pair_lens, dtype=object)
709  self._lookup_func_lookup_func['l'] = np.empty(self._not_lookup_pair_lens_not_lookup_pair_lens, dtype=object)
710 
711  for i in range(self._not_lookup_pair_lens_not_lookup_pair_lens[0]):
712  if self._not_lookup_pair_not_lookup_pair[0] == 'ra':
713  self.rararara = curra[i]
714  if self._not_lookup_pair_not_lookup_pair[0] == 'dec':
715  self.decdecdecdec = curdec[i]
716  if self._not_lookup_pair_not_lookup_pair[0] == 'psi':
717  self.psipsipsipsi = curpsi[i]
718  if self._not_lookup_pair_not_lookup_pair[0] == 'time':
719  self.timestimestimestimes = curtimes[i]
720 
721  for j in range(self._not_lookup_pair_lens_not_lookup_pair_lens[1]):
722  if self._not_lookup_pair_not_lookup_pair[1] == 'ra':
723  self.rararara = curra[j]
724  if self._not_lookup_pair_not_lookup_pair[1] == 'dec':
725  self.decdecdecdec = curdec[j]
726  if self._not_lookup_pair_not_lookup_pair[1] == 'psi':
727  self.psipsipsipsi = curpsi[j]
728  if self._not_lookup_pair_not_lookup_pair[1] == 'time':
729  self.timestimestimestimes = curtimes[j]
730 
731  self.compute_responsecompute_response()
732  if self.tensortensortensortensor:
733  self._lookup_func_lookup_func['plus'][i, j] = RectBivariateSpline(self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[0]]['array'],
734  self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[1]]['array'],
735  self.plusplusplusplus)
736  self._lookup_func_lookup_func['cross'][i, j] = RectBivariateSpline(self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[0]]['array'],
737  self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[1]]['array'],
738  self.crosscrosscrosscross)
739 
740  if self.vectorvectorvectorvector:
741  self._lookup_func_lookup_func['x'][i, j] = RectBivariateSpline(self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[0]]['array'],
742  self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[1]]['array'],
743  self.xxxx)
744  self._lookup_func_lookup_func['y'][i, j] = RectBivariateSpline(self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[0]]['array'],
745  self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[1]]['array'],
746  self.yyyy)
747 
748  if self.scalarscalarscalarscalar:
749  self._lookup_func_lookup_func['b'][i, j] = RectBivariateSpline(self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[0]]['array'],
750  self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[1]]['array'],
751  self.bbbb)
752  self._lookup_func_lookup_func['l'][i, j] = RectBivariateSpline(self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[0]]['array'],
753  self._lookup_pair_dict_lookup_pair_dict[self.lookup_pairlookup_pairlookup_pairlookup_pair[1]]['array'],
754  self.llll)
755 
756  # reset values
757  self.psipsipsipsi = curpsi
758  self.timestimestimestimes = curtimes
759  self.rararara = curra
760  self.decdecdecdec = curdec
761  self._lookup_lookup = True
762 
763  @property
764  def plus(self):
765  return self.responseresponse['plus']
766 
767  @property
768  def tensor_plus(self):
769  return self.plusplusplusplus
770 
771  @plus.setter
772  def plus(self, resp):
773  if self.tensortensortensortensor:
774  self.responseresponse['plus'] = resp
775 
776  @property
777  def cross(self):
778  return self.responseresponse['cross']
779 
780  @property
781  def tensor_cross(self):
782  return self.crosscrosscrosscross
783 
784  @cross.setter
785  def cross(self, resp):
786  if self.tensortensortensortensor:
787  self.responseresponse['cross'] = resp
788 
789  @property
790  def x(self):
791  return self.responseresponse['x']
792 
793  @property
794  def vector_x(self):
795  return self.xxxx
796 
797  @x.setter
798  def x(self, resp):
799  if self.vectorvectorvectorvector:
800  self.responseresponse['x'] = resp
801 
802  @property
803  def y(self):
804  return self.responseresponse['y']
805 
806  @property
807  def vector_y(self):
808  return self.yyyy
809 
810  @y.setter
811  def y(self, resp):
812  if self.vectorvectorvectorvector:
813  self.responseresponse['y'] = resp
814 
815  @property
816  def b(self):
817  return self.responseresponse['b']
818 
819  @property
820  def scalar_b(self):
821  return self.bbbb
822 
823  @b.setter
824  def b(self, resp):
825  if self.scalarscalarscalarscalar:
826  self.responseresponse['b'] = resp
827 
828  @property
829  def l(self):
830  return self.responseresponse['l']
831 
832  @property
833  def scalar_l(self):
834  return self.llll
835 
836  @l.setter
837  def l(self, resp):
838  if self.scalarscalarscalarscalar:
839  self.responseresponse['l'] = resp
840 
841  def _set_mesh(self):
842  """
843  Convert one-dimensional arrays into a mesh. The meshes dimensions are
844  ordered as right ascension, declination, psi, and time.
845  """
846 
847  # mesh order RA, dec, psi, time
848  if (self.rararara is None or self.decdecdecdec is None or
849  self.psipsipsipsi is None or self.timestimestimestimes is None):
850  return
851 
852  ramesh, decmesh, psimesh, timemesh = np.meshgrid(self.rararara, self.decdecdecdec,
853  self.psipsipsipsi,
854  self.gmsttimesgmsttimes,
855  indexing='ij')
856 
857  self.ra_meshra_meshra_meshra_mesh = ramesh
858  self.time_meshtime_meshtime_meshtime_mesh = timemesh
859  self.dec_meshdec_meshdec_meshdec_mesh = decmesh
860  self.psi_meshpsi_meshpsi_meshpsi_mesh = psimesh
861 
862  @property
863  def ra_mesh(self):
864  return self._ra_mesh_ra_mesh
865 
866  @ra_mesh.setter
867  def ra_mesh(self, val):
868  if isinstance(val, np.ndarray):
869  # remove singleton dimemsions
870  self._ra_mesh_ra_mesh = val.squeeze()
871  else:
872  self._ra_mesh_ra_mesh = val
873 
874  try:
875  self._phi_mesh_phi_mesh = np.mod(self._ra_mesh_ra_mesh, 2.*np.pi) - self._time_mesh_time_mesh
876  except Exception:
877  return
878 
879  self._cosphi_mesh_cosphi_mesh = np.cos(self._phi_mesh_phi_mesh)
880  self._sinphi_mesh_sinphi_mesh = np.sin(self._phi_mesh_phi_mesh)
881 
882  @property
883  def time_mesh(self):
884  return self._time_mesh_time_mesh
885 
886  @time_mesh.setter
887  def time_mesh(self, val):
888  if isinstance(val, np.ndarray):
889  # remove singleton dimemsions
890  self._time_mesh_time_mesh = val.squeeze()
891  else:
892  self._time_mesh_time_mesh = val
893 
894  try:
895  self._phi_mesh_phi_mesh = self._ra_mesh_ra_mesh - self._time_mesh_time_mesh
896  except Exception:
897  return
898 
899  self._cosphi_mesh_cosphi_mesh = np.cos(self._phi_mesh_phi_mesh)
900  self._sinphi_mesh_sinphi_mesh = np.sin(self._phi_mesh_phi_mesh)
901 
902  @property
903  def dec_mesh(self):
904  return self._dec_mesh_dec_mesh
905 
906  @dec_mesh.setter
907  def dec_mesh(self, val):
908  if isinstance(val, np.ndarray):
909  # remove singleton dimemsions
910  self._dec_mesh_dec_mesh = val.squeeze()
911  else:
912  self._dec_mesh_dec_mesh = val
913 
914  self._costheta_mesh_costheta_mesh = np.cos(0.5*np.pi - self.dec_meshdec_meshdec_meshdec_mesh)
915  self._sintheta_mesh_sintheta_mesh = np.sin(0.5*np.pi - self.dec_meshdec_meshdec_meshdec_mesh)
916 
917  @property
918  def psi_mesh(self):
919  return self._psi_mesh_psi_mesh
920 
921  @psi_mesh.setter
922  def psi_mesh(self, val):
923  if isinstance(val, np.ndarray):
924  # remove singleton dimemsions
925  self._psi_mesh_psi_mesh = val.squeeze()
926  else:
927  self._psi_mesh_psi_mesh = val
928 
929  self._cospsi_mesh_cospsi_mesh = np.cos(self._psi_mesh_psi_mesh)
930  self._sinpsi_mesh_sinpsi_mesh = np.sin(self._psi_mesh_psi_mesh)
931 
932  def compute_response(self, times=None):
933  """
934  Compute the detector response.
935 
936  @param times: (array_like) an array of GPS times at which to compute
937  the response function. If not set the times set at initialization
938  of the class, or using the <tt>times</tt> property.
939  """
940 
941  if times is not None:
942  self.timestimestimestimes = times
943 
944  if (self.rararara is None or self.decdecdecdec is None or self.psipsipsipsi is None or
945  self.timestimestimestimes is None):
946  return
947 
948  if self.use_laluse_laluse_laluse_lal: # use the internal LAL functions
949  self._compute_response_lal_compute_response_lal()
950  elif self.lookuplookuplookuplookup: # use look-up table
951  self._compute_response_lookup_compute_response_lookup()
952  else: # use default response
953  self._compute_response_compute_response()
954 
955  def _compute_response(self):
956  """
957  Compute antenna pattern.
958  """
959 
960  self._set_mesh_set_mesh()
961 
962  # set any required additional einsum indices
963  einsum_indices = ''
964  eindices = 'klmn' # up to four indices
965  for i in range(len(self.shapeshape)):
966  einsum_indices += eindices[i]
967 
968  # numpy einsum string inputs
969  einstr1 = 'i{},j{}->ij{}'.format(*3*[einsum_indices])
970  einstr2 = 'ij{},ij->{}'.format(*2*[einsum_indices])
971 
972  M = np.array([self._sinphi_mesh_sinphi_mesh*self._cospsi_mesh_cospsi_mesh - self._cosphi_mesh_cosphi_mesh*self._costheta_mesh_costheta_mesh*self._sinpsi_mesh_sinpsi_mesh,
973  -self._cosphi_mesh_cosphi_mesh*self._cospsi_mesh_cospsi_mesh - self._sinphi_mesh_sinphi_mesh*self._costheta_mesh_costheta_mesh*self._sinpsi_mesh_sinpsi_mesh,
974  self._sintheta_mesh_sintheta_mesh*self._sinpsi_mesh_sinpsi_mesh])
975  N = np.array([-self._sinphi_mesh_sinphi_mesh*self._sinpsi_mesh_sinpsi_mesh - self._cosphi_mesh_cosphi_mesh*self._costheta_mesh_costheta_mesh*self._cospsi_mesh_cospsi_mesh,
976  self._cosphi_mesh_cosphi_mesh*self._sinpsi_mesh_sinpsi_mesh - self._sinphi_mesh_sinphi_mesh*self._costheta_mesh_costheta_mesh*self._cospsi_mesh_cospsi_mesh,
977  self._sintheta_mesh_sintheta_mesh*self._cospsi_mesh_cospsi_mesh])
978 
979  mm = np.einsum(einstr1, M, M)
980  mn = np.einsum(einstr1, M, N)
981  nm = np.einsum(einstr1, N, M)
982  nn = np.einsum(einstr1, N, N)
983 
984  if self.tensortensortensortensor:
985  # set tensor polarization components
986  self.plusplusplusplus = np.einsum(einstr2, mm - nn, self.laldetectorlaldetectorlaldetectorlaldetector)
987  self.crosscrosscrosscross = np.einsum(einstr2, mn + nm, self.laldetectorlaldetectorlaldetectorlaldetector)
988 
989  if self.vectorvectorvectorvector or self.scalarscalarscalarscalar:
990  # set scalar and/or vector polarization components
991  Q = np.array([-self._sintheta_mesh_sintheta_mesh*self._cosphi_mesh_cosphi_mesh,
992  -self._sintheta_mesh_sintheta_mesh*self._sinphi_mesh_sinphi_mesh,
993  -self._costheta_mesh_costheta_mesh])
994 
995  if self.vectorvectorvectorvector:
996  mq = np.einsum(einstr1, M, Q)
997  qm = np.einsum(einstr1, Q, M)
998  nq = np.einsum(einstr1, N, Q)
999  qn = np.einsum(einstr1, Q, N)
1000 
1001  self.xxxx = np.einsum(einstr2, mq + qm, self.laldetectorlaldetectorlaldetectorlaldetector)
1002  self.yyyy = np.einsum(einstr2, nq + qn, self.laldetectorlaldetectorlaldetectorlaldetector)
1003 
1004  if self.scalarscalarscalarscalar:
1005  qq = np.einsum(einstr1, Q, Q)
1006 
1007  self.bbbb = np.einsum(einstr2, mm + nn, self.laldetectorlaldetectorlaldetectorlaldetector)
1008  self.llll = np.einsum(einstr2, qq, self.laldetectorlaldetectorlaldetectorlaldetector)
1009 
1010  def _compute_response_lal(self):
1011  """
1012  Compute antenna pattern using LAL functions.
1013  """
1014 
1015  self._set_mesh_set_mesh()
1016 
1017  slen = np.prod(self.shapeshape) if len(self.shapeshape) != 0 else 1
1018 
1019  # allocate memory
1020  if slen != 1:
1021  fp = np.zeros(self.shapeshape)
1022  fc = np.zeros(self.shapeshape)
1023 
1024  if self.tensortensortensortensor and not self.vectorvectorvectorvector and not self.scalarscalarscalarscalar:
1025  # only requiring tensor mode
1026  antenna_func = ComputeDetAMResponse
1027 
1028  if slen == 1:
1029  fp, fc = antenna_func(self.laldetectorlaldetectorlaldetectorlaldetector,
1030  self._ra_mesh_ra_mesh.item(),
1031  self._dec_mesh_dec_mesh.item(),
1032  self._psi_mesh_psi_mesh.item(),
1033  self._time_mesh_time_mesh.item())
1034  else:
1035  for i in range(slen):
1036  idxs = np.unravel_index(i, self.shapeshape)
1037 
1038  fp[idxs], fc[idxs] = antenna_func(self.laldetectorlaldetectorlaldetectorlaldetector,
1039  self._ra_mesh_ra_mesh[idxs],
1040  self._dec_mesh_dec_mesh[idxs],
1041  self._psi_mesh_psi_mesh[idxs],
1042  self._time_mesh_time_mesh[idxs])
1043 
1044  self.plusplusplusplus = fp
1045  self.crosscrosscrosscross = fc
1046  else:
1047  antenna_func = ComputeDetAMResponseExtraModes
1048 
1049  if slen == 1:
1050  fp, fc, fb, fl, fx, fy = antenna_func(self.laldetectorlaldetectorlaldetectorlaldetector,
1051  self._ra_mesh_ra_mesh.item(),
1052  self._dec_mesh_dec_mesh.item(),
1053  self._psi_mesh_psi_mesh.item(),
1054  self._time_mesh_time_mesh.item())
1055  else:
1056  fb = np.zeros(self.shapeshape)
1057  fl = np.zeros(self.shapeshape)
1058  fx = np.zeros(self.shapeshape)
1059  fy = np.zeros(self.shapeshape)
1060 
1061  for i in range(slen):
1062  idxs = np.unravel_index(i, self.shapeshape)
1063 
1064  F = antenna_func(self.laldetectorlaldetectorlaldetectorlaldetector,
1065  self._ra_mesh_ra_mesh[idxs],
1066  self._dec_mesh_dec_mesh[idxs],
1067  self._psi_mesh_psi_mesh[idxs],
1068  self._time_mesh_time_mesh[idxs])
1069 
1070  fp[idxs] = F[0]
1071  fc[idxs] = F[1]
1072  fb[idxs] = F[2]
1073  fl[idxs] = F[3]
1074  fx[idxs] = F[4]
1075  fy[idxs] = F[5]
1076 
1077  if self.tensortensortensortensor:
1078  self.plusplusplusplus = fp
1079  self.crosscrosscrosscross = fc
1080 
1081  if self.vectorvectorvectorvector:
1082  self.xxxx = fx
1083  self.yyyy = fy
1084 
1085  if self.scalarscalarscalarscalar:
1086  self.bbbb = fb
1087  self.llll = fl
1088 
1089  def _compute_response_lookup(self):
1090  # allocate memory
1091  lushape = (len(self.rararara), len(self.decdecdecdec), len(self.psipsipsipsi), len(self.timestimestimestimes))
1092 
1093  if self.tensortensortensortensor:
1094  fp = np.zeros(lushape)
1095  fc = np.zeros(lushape)
1096 
1097  if self.scalarscalarscalarscalar:
1098  fb = np.zeros(lushape)
1099  fl = np.zeros(lushape)
1100 
1101  if self.vectorvectorvectorvector:
1102  fx = np.zeros(lushape)
1103  fy = np.zeros(lushape)
1104 
1105  # set pair of parameters in look-up table
1106  pairs = []
1107  unsorted_idxs = None
1108  for i, val in enumerate(self.lookup_pairlookup_pairlookup_pairlookup_pair):
1109  if val == 'ra':
1110  pairs.append(self.rararara)
1111  if val == 'dec':
1112  pairs.append(self.decdecdecdec)
1113  if val == 'psi':
1114  pairs.append(self.psipsipsipsi)
1115  if val == 'time':
1116  # times mod-ed by a sidereal day
1117  mtimes = np.mod(self.timestimestimestimes - self._timeepoch_timeepoch, DAYSID_SI)
1118  unsorted_idxs = np.argsort(np.argsort(mtimes)) # unsorted indices
1119  mtimes.sort() # sort times for interpolation
1120  pairs.append(mtimes)
1121 
1122  # get reshape tuple
1123  sshape = [len(self.rararara), len(self.decdecdecdec), len(self.psipsipsipsi), len(self.timestimestimestimes)]
1124  sshape[self._not_lookup_pair_idx_not_lookup_pair_idx[0]] = 1
1125  sshape[self._not_lookup_pair_idx_not_lookup_pair_idx[1]] = 1
1126  sshape = tuple(sshape)
1127 
1128  # create slice
1129  pos = 4*[slice(None)]
1130  for i in range(self._not_lookup_pair_lens_not_lookup_pair_lens[0]):
1131  # set slice
1132  pos[self._not_lookup_pair_idx_not_lookup_pair_idx[0]] = slice(i, i+1)
1133  for j in range(self._not_lookup_pair_lens_not_lookup_pair_lens[1]):
1134  # set slice
1135  pos[self._not_lookup_pair_idx_not_lookup_pair_idx[1]] = slice(j, j+1)
1136 
1137  if self.tensortensortensortensor:
1138  fp[tuple(pos)] = self._lookup_func_lookup_func['plus'][i, j](*pairs).reshape(sshape)
1139  fc[tuple(pos)] = self._lookup_func_lookup_func['cross'][i, j](*pairs).reshape(sshape)
1140 
1141  if self.scalarscalarscalarscalar:
1142  fb[tuple(pos)] = self._lookup_func_lookup_func['b'][i, j](*pairs).reshape(sshape)
1143  fl[tuple(pos)] = self._lookup_func_lookup_func['l'][i, j](*pairs).reshape(sshape)
1144 
1145  if self.vectorvectorvectorvector:
1146  fx[tuple(pos)] = self._lookup_func_lookup_func['x'][i, j](*pairs).reshape(sshape)
1147  fy[tuple(pos)] = self._lookup_func_lookup_func['y'][i, j](*pairs).reshape(sshape)
1148 
1149  if unsorted_idxs is not None:
1150  if self.tensortensortensortensor:
1151  self.plusplusplusplus = fp[:, :, :, unsorted_idxs].squeeze()
1152  self.crosscrosscrosscross = fc[:, :, :, unsorted_idxs].squeeze()
1153 
1154  if self.scalarscalarscalarscalar:
1155  self.bbbb = fb[:, :, :, unsorted_idxs].squeeze()
1156  self.llll = fl[:, :, :, unsorted_idxs].squeeze()
1157 
1158  if self.vectorvectorvectorvector:
1159  self.xxxx = fx[:, :, :, unsorted_idxs].squeeze()
1160  self.yyyy = fy[:, :, :, unsorted_idxs].squeeze()
1161  else:
1162  if self.tensortensortensortensor:
1163  self.plusplusplusplus = fp.squeeze()
1164  self.crosscrosscrosscross = fc.squeeze()
1165 
1166  if self.scalarscalarscalarscalar:
1167  self.bbbb = fb.squeeze()
1168  self.llll = fl.squeeze()
1169 
1170  if self.vectorvectorvectorvector:
1171  self.xxxx = fx.squeeze()
1172  self.yyyy = fy.squeeze()
1173 
1174  def __len__(self):
1175  return len(self.timestimestimestimes)
1176 
1177  def __call__(self, times, ra=None, dec=None, psi=None, detector=None):
1178  """
1179  Return the antenna response function as a dictionary.
1180  """
1181 
1182  if detector is not None:
1183  self.detectordetectordetectordetector = detector
1184 
1185  if ra is not None:
1186  self.rararara = ra
1187 
1188  if dec is not None:
1189  self.decdecdecdec = dec
1190 
1191  if psi is not None:
1192  self.psipsipsipsi = psi
1193 
1194  self.timestimestimestimes = times
1195 
1196  # compute response
1197  self.compute_responsecompute_response()
1198 
1199  return self.responseresponse
1200 
1201 ## @}
def vector(self, vectorval)
Set whether to include vector polarizations.
Definition: antenna.py:532
def __init__(self, detector, ra, dec, psi=0., times=None, tensor=True, vector=False, scalar=False, use_lal=False, lookup=False, lookuppair=None, bins1=100, bins2=100)
Calculate the long-wavelength limit antenna response functions for a given ground-based gravitational...
Definition: antenna.py:261
def psi(self, psival)
Set the value of the gravitational wave polarization angle psi.
Definition: antenna.py:435
def ra(self, raval)
Set the right ascension.
Definition: antenna.py:358
def compute_response(self, times=None)
Compute the detector response.
Definition: antenna.py:939
def ra_mesh(self, val)
Definition: antenna.py:867
def x(self, resp)
Definition: antenna.py:798
def l(self, resp)
Definition: antenna.py:837
def time_mesh(self, val)
Definition: antenna.py:887
def tensor(self, tensorval)
Set whether to include tensor polarizations.
Definition: antenna.py:517
def detector(self, det)
Set the detector for which to calculate the antenna response.
Definition: antenna.py:310
def dec_mesh(self, val)
Definition: antenna.py:907
def lookup(self, val)
Set the 2d look-up table.
Definition: antenna.py:652
def _compute_response_lookup(self)
Definition: antenna.py:1089
def plus(self, resp)
Definition: antenna.py:772
def __call__(self, times, ra=None, dec=None, psi=None, detector=None)
Return the antenna response function as a dictionary.
Definition: antenna.py:1180
def scalar(self, scalarval)
Set whether to include scalar polarizations.
Definition: antenna.py:547
def cross(self, resp)
Definition: antenna.py:785
def b(self, resp)
Definition: antenna.py:824
def y(self, resp)
Definition: antenna.py:811
def times(self, timearr)
Set array of times and GPS times.
Definition: antenna.py:468
def dec(self, decval)
Set the declination.
Definition: antenna.py:393
def use_lal(self, val)
Set whether to use LAL antenna response functions.
Definition: antenna.py:562
def laldetector(self, det)
Set the lal.Detector.
Definition: antenna.py:336
def psi_mesh(self, val)
Definition: antenna.py:922
def set_lookup_pair(self, pair=['psi', 'time'], bins1=100, bins2=100)
Set the pair of parameters to use for the look-up table.
Definition: antenna.py:601
def lookup_pair(self, pair)
Definition: antenna.py:574
def _compute_response_lal(self)
Definition: antenna.py:1013