|
double | log_dVC_dVL (double DL) |
|
void | dVC_dVL_init (void) |
|
static double | radial_integrand (double r, void *params) |
|
double | log_radial_integrand (double r, void *params) |
|
double | log_radial_integral (double r1, double r2, double p, double b, int k, int cosmology, int gaussian) |
|
log_radial_integrator * | log_radial_integrator_init (double r1, double r2, int k, int cosmology, double pmax, size_t size, int gaussian) |
| Distance integrator for marginalisation. More...
|
|
void | log_radial_integrator_free (log_radial_integrator *integrator) |
| Free an integrator. More...
|
|
double | log_radial_integrator_eval (const log_radial_integrator *integrator, double p, double b, double log_p, double log_b) |
| Evaluate the log distance integrator for given SNRs. More...
|
|
Go to the source code of this file.
◆ omp
◆ log_dVC_dVL()
double log_dVC_dVL |
( |
double |
DL | ) |
|
◆ dVC_dVL_init()
void dVC_dVL_init |
( |
void |
| ) |
|
◆ radial_integrand()
static double radial_integrand |
( |
double |
r, |
|
|
void * |
params |
|
) |
| |
|
static |
◆ log_radial_integrand()
double log_radial_integrand |
( |
double |
r, |
|
|
void * |
params |
|
) |
| |
◆ log_radial_integral()
double log_radial_integral |
( |
double |
r1, |
|
|
double |
r2, |
|
|
double |
p, |
|
|
double |
b, |
|
|
int |
k, |
|
|
int |
cosmology, |
|
|
int |
gaussian |
|
) |
| |
◆ log_radial_integrator_init()
log_radial_integrator * log_radial_integrator_init |
( |
double |
r1, |
|
|
double |
r2, |
|
|
int |
k, |
|
|
int |
cosmology, |
|
|
double |
pmax, |
|
|
size_t |
size, |
|
|
int |
gaussian |
|
) |
| |
Distance integrator for marginalisation.
Assumes a besselI0-type marginalised phase likelihood.
- Parameters
-
r1 | Minimum distance (Mpc) |
r2 | Maximum distance (Mpc) |
k | Exponent of distance prior \( p(r) propto r^k \) |
cosmology | 0: Euclidean, 1: use co-moving volume prior |
pmax | The maximum optimal SNR to allow |
size | Size of lookup table |
gaussian | Use gaussian likelihood instead of phase-marginalised one |
Definition at line 267 of file distance_integrator.c.
◆ log_radial_integrator_free()
◆ log_radial_integrator_eval()
double log_radial_integrator_eval |
( |
const log_radial_integrator * |
integrator, |
|
|
double |
p, |
|
|
double |
b, |
|
|
double |
log_p, |
|
|
double |
log_b |
|
) |
| |
Evaluate the log distance integrator for given SNRs.
With a template at reference distance (1Mpc), compute the marginal likelihood over distance. Uses the two SNRs \( p=sqrt(<h|h>) \) and \( b=<d|h> \).
- Parameters
-
integrator | a log_radial_integrator |
p | The optimal SNR \( p = sqrt(<h|h>) \) |
b | match between template and data \( b = <h|d> \) |
log_p | log(p) |
log_b | log(b) |
Definition at line 379 of file distance_integrator.c.
◆ dVC_dVL_interp
gsl_spline* dVC_dVL_interp = NULL |
|
static |