These are the input structures needed to solve for the mass ratio \(\eta\) given the chirptimes \((\tau_0,\, \tau_2)\) or \((\tau_0, \, \tau_4).\).
Here, t2
\( = \tau_2,\) A2
\( = A_2 ({\tau_0}/{A_0})^{3/5},\) and B2
\(=B_2\), where \(A_0 = 5/[256 (\pi f_{s} )^{8/3}],\) \(A_2 = 3715 / [64512 (\pi f_s)^2],\) \(B_2 = 4620/3715.\)
Similarly, t4
\( = \tau_4,\) A4
\( = A_4 ({\tau_0}/{A_0})^{1/5},\) B4
\(=B_4\) and C4
\(=C_4,\) where where \(A_0 = 5/[256 (\pi f_{s} )^{8/3}],\) \(A_4 = 5 \times 3058673/ [128 \times 1016064 (\pi f_s)^{4/3}],\) \(B_4 = 5429 \times 1016064 /(1008 \times 3058673),\) and \(C_4 = 617 \times
1016064/(144 \times 3058673).\)
Definition at line 148 of file LALInspiral.h.
Data Fields | |
REAL8 | t2 |
REAL8 | A2 |
REAL8 | B2 |
REAL8 EtaTau02In::t2 |
Definition at line 151 of file LALInspiral.h.
REAL8 EtaTau02In::A2 |
Definition at line 152 of file LALInspiral.h.
REAL8 EtaTau02In::B2 |
Definition at line 153 of file LALInspiral.h.