Loading [MathJax]/extensions/TeX/newcommand.js
LALPulsar 7.1.1.1-b246709
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
AntennaPatternMatrix Struct Reference

Detailed Description

Struct holding the "antenna-pattern" matrix \mathcal{M}_{\mu\nu} \equiv \left( \mathbf{h}_\mu|\mathbf{h}_\nu\right) , in terms of the multi-detector scalar product.

\newcommand{\Ad}{\widehat{A}} \newcommand{\Bd}{\widehat{B}} \newcommand{\Cd}{\widehat{C}} \newcommand{\Ed}{\widehat{E}} \newcommand{\Dd}{\widehat{D}} \newcommand{\ah}{\hat{a}} \newcommand{\bh}{\hat{b}} \newcommand{\M}{\mathcal{M}} \newcommand{\S}{\mathcal{S}} \newcommand{\Tsft}{T_{\mathrm{sft}}} \newcommand{\Nsft}{N_{\mathrm{sft}}}

This matrix can be shown to be generally expressible as

\begin{equation} \M_{\mu\nu} = \S^{-1}\,\Tsft\,\begin{pmatrix} \Ad & \Cd & 0 & -\Ed \\ \Cd & \Bd & \Ed & 0 \\ 0 & \Ed & \Ad & \Cd \\ -\Ed & 0 & \Cd & \Bd \\ \end{pmatrix} \end{equation}

where \S^{-1} \equiv \frac{1}{\Nsft}\sum_{X\alpha} S^{-1}_{X\alpha} characterizes the overall multi-detector noise-floor. The sum is over all detectors X and all SFTs \alpha from each detector. The nonzero matrix coefficients are expressible as

\begin{align} \Ad &\equiv \sum_{X\alpha} \left|\ah_{X\alpha}\right|^2 \,,\\ \Bd &\equiv \sum_{X\alpha} \left|\bh_{X\alpha}\right|^2 \,,\\ \Cd &\equiv \mathrm{Re} \sum_{X\alpha} \ah_{X\alpha}^{\,*} \,\bh_{X\alpha} \,,\\ \Ed &\equiv \mathrm{Im} \sum_{X\alpha} \ah_{X\alpha}^{\,*} \,\bh_{X\alpha} \,,\\ \end{align}

in terms of the noise-weighted atenna-functions are \ah_{X\alpha} \equiv \sqrt{w_{X\alpha}}\,a_{X\alpha} , and \bh_{X\alpha} = \sqrt{w_{X\alpha}}\,b_{X\alpha} , with per-SFT noise-weights w_{X\alpha} \equiv \frac{S^{-1}_{X\alpha}}{\S^{-1}} .

Note
One reason for storing the un-normalized \{\Ad,\,\Bd,\,\Cd,\,\Ed\} and the normalization-factor \S^{-1}\,\Tsft separately is that the former are of order one, while the latter is generally very large, and so it has numerical advantages for parameter-estimation to use that fact.

Definition at line 127 of file LALComputeAM.h.

Data Fields

REAL4 Ad
  \Ad More...
 
REAL4 Bd
  \Bd More...
 
REAL4 Cd
  \Cd More...
 
REAL4 Ed
  \Ed More...
 
REAL4 Dd
 determinant factor \Dd \equiv \Ad \Bd - \Cd^2 - \Ed^2 , such that \det\M = \Dd^2 More...
 
REAL8 Sinv_Tsft
 normalization-factor \S^{-1}\,\Tsft (using single-sided PSD!) More...
 

Field Documentation

◆ Ad

REAL4 AntennaPatternMatrix::Ad

\Ad

Definition at line 128 of file LALComputeAM.h.

◆ Bd

REAL4 AntennaPatternMatrix::Bd

\Bd

Definition at line 129 of file LALComputeAM.h.

◆ Cd

REAL4 AntennaPatternMatrix::Cd

\Cd

Definition at line 130 of file LALComputeAM.h.

◆ Ed

REAL4 AntennaPatternMatrix::Ed

\Ed

Definition at line 131 of file LALComputeAM.h.

◆ Dd

REAL4 AntennaPatternMatrix::Dd

determinant factor \Dd \equiv \Ad \Bd - \Cd^2 - \Ed^2 , such that \det\M = \Dd^2

Definition at line 132 of file LALComputeAM.h.

◆ Sinv_Tsft

REAL8 AntennaPatternMatrix::Sinv_Tsft

normalization-factor \S^{-1}\,\Tsft (using single-sided PSD!)

Definition at line 133 of file LALComputeAM.h.