27#include <lal/LALAdaptiveRungeKuttaIntegrator.h>
28#include <lal/LALConstants.h>
29#include <lal/FindRoot.h>
30#include <lal/SeqFactories.h>
31#include <lal/LALSimInspiral.h>
32#include <lal/LALSimIMR.h>
34#include <lal/LALSimNoise.h>
35#include <lal/ComplexFFT.h>
37#include <lal/ComplexFFT.h>
38#include <gsl/gsl_errno.h>
39#include <gsl/gsl_spline.h>
40#include <gsl/gsl_math.h>
42#include "../lib/LALSimIMRPhenomNSBH.c"
44#define MYUNUSED(expr) do { (void)(expr); } while (0)
49 return fabs(b) < epsilon;
51 return fabs(
a) < epsilon;
53 return !gsl_fcmp(
a, b, epsilon);
58 printf(
"%s: %-20.17g\t%-20.17g\t%-20.17g\n",
name,
u, u_expected,
u - u_expected);
62#define TOLERANCE_X_D 1e-8
64 {0.0234970529550629, 0.14, 2.00, -0.90}, {0.1299454661328111, 0.14, 2.00, 0.00},
65 {0.2882657031643916, 0.14, 2.00, 0.90}, {0.0000000000000000, 0.14, 3.00, -0.90},
66 {0.0643792049443779, 0.14, 3.00, 0.00}, {0.2941998033123807, 0.14, 3.00, 0.90},
67 {0.0000000000000000, 0.14, 4.00, -0.90}, {0.0000000000000000, 0.14, 4.00, 0.00},
68 {0.2887085776862365, 0.14, 4.00, 0.90}, {0.0000000000000000, 0.14, 5.00, -0.90},
69 {0.0000000000000000, 0.14, 5.00, 0.00}, {0.2763968308942356, 0.14, 5.00, 0.90},
70 {0.0000000000000000, 0.17, 2.00, -0.90}, {0.0430073416291199, 0.17, 2.00, 0.00},
71 {0.2332155204085186, 0.17, 2.00, 0.90}, {0.0000000000000000, 0.17, 3.00, -0.90},
72 {0.0000000000000000, 0.17, 3.00, 0.00}, {0.2231866136920418, 0.17, 3.00, 0.90},
73 {0.0000000000000000, 0.17, 4.00, -0.90}, {0.0000000000000000, 0.17, 4.00, 0.00},
74 {0.2028602793140871, 0.17, 4.00, 0.90}, {0.0000000000000000, 0.17, 5.00, -0.90},
75 {0.0000000000000000, 0.17, 5.00, 0.00}, {0.1765433406768961, 0.17, 5.00, 0.90},
76 {0.0000000000000000, 0.20, 2.00, -0.90}, {0.0000000000000000, 0.20, 2.00, 0.00},
77 {0.1778008350569429, 0.20, 2.00, 0.90}, {0.0000000000000000, 0.20, 3.00, -0.90},
78 {0.0000000000000000, 0.20, 3.00, 0.00}, {0.1517306063389851, 0.20, 3.00, 0.90},
79 {0.0000000000000000, 0.20, 4.00, -0.90}, {0.0000000000000000, 0.20, 4.00, 0.00},
80 {0.1165992019782404, 0.20, 4.00, 0.90}, {0.0000000000000000, 0.20, 5.00, -0.90},
81 {0.0000000000000000, 0.20, 5.00, 0.00}, {0.0764832851666699, 0.20, 5.00, 0.90}};
83 0.3088924923327651, 0.3608377155105134, 0.4646547625420939,
84 0.2714360204588185, 0.2813120354031964, 0.4566294437711992,
85 0.2594324700000000, 0.2049292800000000, 0.4391346676862365,
86 0.2494980801484723, 0.1949948901484723, 0.4168885310427079,
87 0.2981427993777023, 0.2866469510068221, 0.4223519397862209,
88 0.2841833804588185, 0.2296801904588185, 0.3983636141508602,
89 0.2721798300000000, 0.2176766400000000, 0.3660337293140871,
90 0.2622454401484722, 0.2077422501484723, 0.3297824008253684,
91 0.3108901593777023, 0.2563869693777023, 0.3796846144346452,
92 0.2969307404588185, 0.2424275504588185, 0.3396549667978037,
93 0.2849271900000000, 0.2304240000000000, 0.2925200119782405,
94 0.2749928001484723, 0.2204896101484723, 0.2424697053151421};
97 printf(
"\n## Test_x_D\n\n");
109#define COUNT_EPSILON_INS_WITH_TORUS_MASS 36
110#define TOLERANCE_EPSILON_INS_WITH_TORUS_MASS 1e-8
112 {0.0234970529550629, 0.14, 2.00, -0.90}, {0.1299454661328111, 0.14, 2.00, 0.00},
113 {0.2882657031643916, 0.14, 2.00, 0.90}, {0.0000000000000000, 0.14, 3.00, -0.90},
114 {0.0643792049443779, 0.14, 3.00, 0.00}, {0.2941998033123807, 0.14, 3.00, 0.90},
115 {0.0000000000000000, 0.14, 4.00, -0.90}, {0.0000000000000000, 0.14, 4.00, 0.00},
116 {0.2887085776862365, 0.14, 4.00, 0.90}, {0.0000000000000000, 0.14, 5.00, -0.90},
117 {0.0000000000000000, 0.14, 5.00, 0.00}, {0.2763968308942356, 0.14, 5.00, 0.90},
118 {0.0000000000000000, 0.17, 2.00, -0.90}, {0.0430073416291199, 0.17, 2.00, 0.00},
119 {0.2332155204085186, 0.17, 2.00, 0.90}, {0.0000000000000000, 0.17, 3.00, -0.90},
120 {0.0000000000000000, 0.17, 3.00, 0.00}, {0.2231866136920418, 0.17, 3.00, 0.90},
121 {0.0000000000000000, 0.17, 4.00, -0.90}, {0.0000000000000000, 0.17, 4.00, 0.00},
122 {0.2028602793140871, 0.17, 4.00, 0.90}, {0.0000000000000000, 0.17, 5.00, -0.90},
123 {0.0000000000000000, 0.17, 5.00, 0.00}, {0.1765433406768961, 0.17, 5.00, 0.90},
124 {0.0000000000000000, 0.20, 2.00, -0.90}, {0.0000000000000000, 0.20, 2.00, 0.00},
125 {0.1778008350569429, 0.20, 2.00, 0.90}, {0.0000000000000000, 0.20, 3.00, -0.90},
126 {0.0000000000000000, 0.20, 3.00, 0.00}, {0.1517306063389851, 0.20, 3.00, 0.90},
127 {0.0000000000000000, 0.20, 4.00, -0.90}, {0.0000000000000000, 0.20, 4.00, 0.00},
128 {0.1165992019782404, 0.20, 4.00, 0.90}, {0.0000000000000000, 0.20, 5.00, -0.90},
129 {0.0000000000000000, 0.20, 5.00, 0.00}, {0.0764832851666699, 0.20, 5.00, 0.90}};
131 0.8001567056997589, 0.7161488129677773, 0.5482517318264241,
132 0.8607328102731804, 0.8447609238645346, 0.5612305983554656,
133 0.8801454322171999, 0.9682901712127998, 0.5895238500311107,
134 0.8962117248606847, 0.9843564638562846, 0.6255011920564910,
135 0.8175415391344047, 0.8361330849537270, 0.6166655489001320,
136 0.8401172697867804, 0.9282620087823803, 0.6554604286506627,
137 0.8595298917307999, 0.9476746307263999, 0.7077456116040858,
138 0.8755961843742848, 0.9637409233698846, 0.7663727100891812,
139 0.7969259986480047, 0.8850707376436047, 0.6856688541517143,
140 0.8195017293003803, 0.9076464682959803, 0.7504064014959200,
141 0.8389143512443999, 0.9270590902399999, 0.8266349358283103,
142 0.8549806438878846, 0.9431253828834847, 0.9075782937761394};
145 printf(
"\n## Test_epsilon_ins_with_torus_mass\n\n");
157#define COUNT_X_D_PRIME 36
158#define TOLERANCE_X_D_PRIME 1e-8
160 {0.0234970529550629, 0.14, 2.00, -0.90}, {0.1299454661328111, 0.14, 2.00, 0.00},
161 {0.2882657031643916, 0.14, 2.00, 0.90}, {0.0000000000000000, 0.14, 3.00, -0.90},
162 {0.0643792049443779, 0.14, 3.00, 0.00}, {0.2941998033123807, 0.14, 3.00, 0.90},
163 {0.0000000000000000, 0.14, 4.00, -0.90}, {0.0000000000000000, 0.14, 4.00, 0.00},
164 {0.2887085776862365, 0.14, 4.00, 0.90}, {0.0000000000000000, 0.14, 5.00, -0.90},
165 {0.0000000000000000, 0.14, 5.00, 0.00}, {0.2763968308942356, 0.14, 5.00, 0.90},
166 {0.0000000000000000, 0.17, 2.00, -0.90}, {0.0430073416291199, 0.17, 2.00, 0.00},
167 {0.2332155204085186, 0.17, 2.00, 0.90}, {0.0000000000000000, 0.17, 3.00, -0.90},
168 {0.0000000000000000, 0.17, 3.00, 0.00}, {0.2231866136920418, 0.17, 3.00, 0.90},
169 {0.0000000000000000, 0.17, 4.00, -0.90}, {0.0000000000000000, 0.17, 4.00, 0.00},
170 {0.2028602793140871, 0.17, 4.00, 0.90}, {0.0000000000000000, 0.17, 5.00, -0.90},
171 {0.0000000000000000, 0.17, 5.00, 0.00}, {0.1765433406768961, 0.17, 5.00, 0.90},
172 {0.0000000000000000, 0.20, 2.00, -0.90}, {0.0000000000000000, 0.20, 2.00, 0.00},
173 {0.1778008350569429, 0.20, 2.00, 0.90}, {0.0000000000000000, 0.20, 3.00, -0.90},
174 {0.0000000000000000, 0.20, 3.00, 0.00}, {0.1517306063389851, 0.20, 3.00, 0.90},
175 {0.0000000000000000, 0.20, 4.00, -0.90}, {0.0000000000000000, 0.20, 4.00, 0.00},
176 {0.1165992019782404, 0.20, 4.00, 0.90}, {0.0000000000000000, 0.20, 5.00, -0.90},
177 {0.0000000000000000, 0.20, 5.00, 0.00}, {0.0764832851666699, 0.20, 5.00, 0.90}};
179 0.3355511601551063, 0.3832042797328545, 0.3853372531644350,
180 0.2899147353874842, 0.2954986467318621, 0.3691319814998649,
181 0.2708773336000000, 0.2120820400000000, 0.3446033540862365,
182 0.2551215810194710, 0.1963262874194710, 0.3165358547137066,
183 0.3080714872000434, 0.2922835352291633, 0.3263044504085620,
184 0.2859321153874842, 0.2271368217874842, 0.2941361718795260,
185 0.2668947136000000, 0.2080994200000000, 0.2547724357140870,
186 0.2511389610194710, 0.1923436674194710, 0.2126997444963671,
187 0.3040888672000434, 0.2452935736000434, 0.2669071450569863,
188 0.2819494953874842, 0.2231542017874842, 0.2186975445264693,
189 0.2629120936000000, 0.2041168000000000, 0.1645287383782404,
190 0.2471563410194710, 0.1883610474194710, 0.1086570689861409};
193 printf(
"\n## Test_x_D_prime\n\n");
205#define COUNT_SIGMA_TIDE_WITH_TORUS_MASS 36
206#define TOLERANCE_SIGMA_TIDE_WITH_TORUS_MASS 1e-8
208 {0.0234970529550629, 0.14, 2.00, -0.90}, {0.1299454661328111, 0.14, 2.00, 0.00},
209 {0.2882657031643916, 0.14, 2.00, 0.90}, {0.0000000000000000, 0.14, 3.00, -0.90},
210 {0.0643792049443779, 0.14, 3.00, 0.00}, {0.2941998033123807, 0.14, 3.00, 0.90},
211 {0.0000000000000000, 0.14, 4.00, -0.90}, {0.0000000000000000, 0.14, 4.00, 0.00},
212 {0.2887085776862365, 0.14, 4.00, 0.90}, {0.0000000000000000, 0.14, 5.00, -0.90},
213 {0.0000000000000000, 0.14, 5.00, 0.00}, {0.2763968308942356, 0.14, 5.00, 0.90},
214 {0.0000000000000000, 0.17, 2.00, -0.90}, {0.0430073416291199, 0.17, 2.00, 0.00},
215 {0.2332155204085186, 0.17, 2.00, 0.90}, {0.0000000000000000, 0.17, 3.00, -0.90},
216 {0.0000000000000000, 0.17, 3.00, 0.00}, {0.2231866136920418, 0.17, 3.00, 0.90},
217 {0.0000000000000000, 0.17, 4.00, -0.90}, {0.0000000000000000, 0.17, 4.00, 0.00},
218 {0.2028602793140871, 0.17, 4.00, 0.90}, {0.0000000000000000, 0.17, 5.00, -0.90},
219 {0.0000000000000000, 0.17, 5.00, 0.00}, {0.1765433406768961, 0.17, 5.00, 0.90},
220 {0.0000000000000000, 0.20, 2.00, -0.90}, {0.0000000000000000, 0.20, 2.00, 0.00},
221 {0.1778008350569429, 0.20, 2.00, 0.90}, {0.0000000000000000, 0.20, 3.00, -0.90},
222 {0.0000000000000000, 0.20, 3.00, 0.00}, {0.1517306063389851, 0.20, 3.00, 0.90},
223 {0.0000000000000000, 0.20, 4.00, -0.90}, {0.0000000000000000, 0.20, 4.00, 0.00},
224 {0.1165992019782404, 0.20, 4.00, 0.90}, {0.0000000000000000, 0.20, 5.00, -0.90},
225 {0.0000000000000000, 0.20, 5.00, 0.00}, {0.0764832851666699, 0.20, 5.00, 0.90}};
227 0.0393259844495971, 0.0253523266239769, 0.0247268598938206,
228 0.0527082727391803, 0.0510708633282890, 0.0294788451409241,
229 0.0582907433271368, 0.0755316988365200, 0.0366715462578143,
230 0.0629109129465934, 0.0801518684559766, 0.0449019755713168,
231 0.0473840413079209, 0.0520136529800058, 0.0420374618755445,
232 0.0538761242801203, 0.0711170797895035, 0.0514703913665634,
233 0.0594585948680768, 0.0766995503774600, 0.0630132952685083,
234 0.0640787644875334, 0.0813197199969166, 0.0753505650231188,
235 0.0485518928488609, 0.0657928483582441, 0.0594549495049245,
236 0.0550439758210603, 0.0722849313304435, 0.0735917881356917,
237 0.0606264464090168, 0.0778674019184000, 0.0894760863441799,
238 0.0652466160284734, 0.0824875715378566, 0.1058597270617110};
241 printf(
"\n## Test_sigma_tide_with_torus_mass\n\n");
253#define COUNT_EPSILON_TIDE_ND 108
254#define TOLERANCE_EPSILON_TIDE_ND 1e-8
256 {0.0750891905667151}, {0.0205860905667151}, {-0.0339170094332849}, {0.0811293896551724},
257 {0.0266262896551724}, {-0.0278768103448276}, {0.0864809986779085}, {0.0319778986779085},
258 {-0.0225252013220915}, {0.0912559101484723}, {0.0367528101484723}, {-0.0177502898515277},
259 {0.0899611105667151}, {0.0354580105667151}, {-0.0190450894332849}, {0.0960013096551724},
260 {0.0414982096551724}, {-0.0130048903448276}, {0.1013529186779085}, {0.0468498186779085},
261 {-0.0076532813220915}, {0.1061278301484723}, {0.0516247301484723}, {-0.0028783698515277},
262 {0.1048330305667151}, {0.0503299305667151}, {-0.0041731694332849}, {0.1108732296551724},
263 {0.0563701296551724}, {0.0018670296551724}, {0.1162248386779085}, {0.0617217386779085},
264 {0.0072186386779085}, {0.1209997501484723}, {0.0664966501484723}, {0.0119935501484722},
265 {0.2050891905667151}, {0.1505860905667151}, {0.0960829905667151}, {0.2111293896551724},
266 {0.1566262896551724}, {0.1021231896551724}, {0.2164809986779085}, {0.1619778986779085},
267 {0.1074747986779085}, {0.2212559101484723}, {0.1667528101484723}, {0.1122497101484723},
268 {0.2199611105667151}, {0.1654580105667151}, {0.1109549105667151}, {0.2260013096551724},
269 {0.1714982096551724}, {0.1169951096551724}, {0.2313529186779085}, {0.1768498186779085},
270 {0.1223467186779085}, {0.2361278301484722}, {0.1816247301484722}, {0.1271216301484722},
271 {0.2348330305667151}, {0.1803299305667151}, {0.1258268305667151}, {0.2408732296551724},
272 {0.1863701296551724}, {0.1318670296551724}, {0.2462248386779085}, {0.1917217386779085},
273 {0.1372186386779085}, {0.2509997501484723}, {0.1964966501484723}, {0.1419935501484723},
274 {0.3350891905667152}, {0.2805860905667151}, {0.2260829905667151}, {0.3411293896551725},
275 {0.2866262896551725}, {0.2321231896551725}, {0.3464809986779085}, {0.2919778986779085},
276 {0.2374747986779085}, {0.3512559101484723}, {0.2967528101484723}, {0.2422497101484723},
277 {0.3499611105667151}, {0.2954580105667151}, {0.2409549105667151}, {0.3560013096551725},
278 {0.3014982096551724}, {0.2469951096551724}, {0.3613529186779085}, {0.3068498186779085},
279 {0.2523467186779085}, {0.3661278301484723}, {0.3116247301484723}, {0.2571216301484722},
280 {0.3648330305667151}, {0.3103299305667151}, {0.2558268305667151}, {0.3708732296551724},
281 {0.3163701296551724}, {0.2618670296551724}, {0.3762248386779086}, {0.3217217386779085},
282 {0.2672186386779085}, {0.3809997501484723}, {0.3264966501484723}, {0.2719935501484723}};
284 0.9999998046379084, 0.9999548831569878, 0.9896872570770727,
285 0.9999998931171316, 0.9999753160110837, 0.9943314088158876,
286 0.9999999373622024, 0.9999855340106710, 0.9966701567238552,
287 0.9999999611157933, 0.9999910197737862, 0.9979302909525667,
288 0.9999999557491098, 0.9999897803621014, 0.9976453084404011,
289 0.9999999757902789, 0.9999944087966979, 0.9987103698215647,
290 0.9999999858120989, 0.9999967233153314, 0.9992438195259769,
291 0.9999999911924543, 0.9999979659016727, 0.9995304446762743,
292 0.9999999899768628, 0.9999976851620673, 0.9994656726625458,
293 0.9999999945163283, 0.9999987335477748, 0.9997075980461685,
294 0.9999999967863409, 0.9999992578060686, 0.9998286195805649,
295 0.9999999980050291, 0.9999995392617429, 0.9998936037842391,
296 0.9999999999995498, 0.9999999998960247, 0.9999999759869289,
297 0.9999999999997538, 0.9999999999431151, 0.9999999868624169,
298 0.9999999999998557, 0.9999999999666631, 0.9999999923008313,
299 0.9999999999999104, 0.9999999999793051, 0.9999999952205205,
300 0.9999999999998981, 0.9999999999764488, 0.9999999945608710,
301 0.9999999999999443, 0.9999999999871152, 0.9999999970242452,
302 0.9999999999999674, 0.9999999999924489, 0.9999999982560843,
303 0.9999999999999797, 0.9999999999953124, 0.9999999989174144,
304 0.9999999999999769, 0.9999999999946655, 0.9999999987679991,
305 0.9999999999999873, 0.9999999999970814, 0.9999999993259707,
306 0.9999999999999927, 0.9999999999982896, 0.9999999996049909,
307 0.9999999999999953, 0.9999999999989382, 0.9999999997547868,
308 1.0000000000000000, 0.9999999999999998, 0.9999999999999447,
309 1.0000000000000000, 0.9999999999999999, 0.9999999999999698,
310 1.0000000000000000, 1.0000000000000000, 0.9999999999999822,
311 1.0000000000000000, 1.0000000000000000, 0.9999999999999890,
312 1.0000000000000000, 1.0000000000000000, 0.9999999999999875,
313 1.0000000000000000, 1.0000000000000000, 0.9999999999999931,
314 1.0000000000000000, 1.0000000000000000, 0.9999999999999960,
315 1.0000000000000000, 1.0000000000000000, 0.9999999999999976,
316 1.0000000000000000, 1.0000000000000000, 0.9999999999999971,
317 1.0000000000000000, 1.0000000000000000, 0.9999999999999984,
318 1.0000000000000000, 1.0000000000000000, 0.9999999999999991,
319 1.0000000000000000, 1.0000000000000000, 0.9999999999999994};
322 printf(
"\n## Test_epsilon_tide_ND\n\n");
331#define COUNT_SIGMA_TIDE_ND 108
332#define TOLERANCE_SIGMA_TIDE_ND 1e-8
334 {11.4913585699999974}, {11.4679606399999976}, {11.4445627099999978}, {11.4782100899999975},
335 {11.4548121599999977}, {11.4314142299999979}, {11.4650616099999976}, {11.4416636799999978},
336 {11.4182657499999980}, {11.4519131299999959}, {11.4285151999999961}, {11.4051172699999963},
337 {5.7479675665397911}, {5.7245696365397913}, {5.7011717065397916}, {5.7348190865397912},
338 {5.7114211565397914}, {5.6880232265397916}, {5.7216706065397913}, {5.6982726765397915},
339 {5.6748747465397917}, {5.7085221265397914}, {5.6851241965397916}, {5.6617262665397918},
340 {3.9313585699999996}, {3.9079606399999998}, {3.8845627100000000}, {3.9182100899999996},
341 {3.8948121599999999}, {3.8714142300000001}, {3.9050616099999997}, {3.8816636799999999},
342 {3.8582657500000002}, {3.8919131299999998}, {3.8685152000000000}, {3.8451172700000003},
343 {0.5713585699999997}, {0.5479606399999997}, {0.5245627099999997}, {0.5582100899999997},
344 {0.5348121599999996}, {0.5114142299999996}, {0.5450616099999996}, {0.5216636799999996},
345 {0.4982657499999996}, {0.5319131299999997}, {0.5085151999999997}, {0.4851172699999997},
346 {0.7099052828027679}, {0.6865073528027679}, {0.6631094228027679}, {0.6967568028027679},
347 {0.6733588728027678}, {0.6499609428027678}, {0.6836083228027678}, {0.6602103928027678},
348 {0.6368124628027678}, {0.6704598428027679}, {0.6470619128027679}, {0.6236639828027679},
349 {0.7716363477777777}, {0.7482384177777777}, {0.7248404877777777}, {0.7584878677777777},
350 {0.7350899377777776}, {0.7116920077777776}, {0.7453393877777776}, {0.7219414577777776},
351 {0.6985435277777776}, {0.7321909077777777}, {0.7087929777777777}, {0.6853950477777777},
352 {3.1713585699999998}, {3.1479606400000000}, {3.1245627100000002}, {3.1582100899999999},
353 {3.1348121600000001}, {3.1114142300000003}, {3.1450616100000000}, {3.1216636800000002},
354 {3.0982657500000004}, {3.1319131300000000}, {3.1085152000000003}, {3.0851172700000005},
355 {0.3500436911072667}, {0.3266457611072667}, {0.3032478311072667}, {0.3368952111072667},
356 {0.3134972811072667}, {0.2900993511072667}, {0.3237467311072668}, {0.3003488011072667},
357 {0.2769508711072667}, {0.3105982511072667}, {0.2872003211072667}, {0.2638023911072667},
358 {-0.0408636522222222}, {-0.0642615822222222}, {-0.0876595122222222}, {-0.0540121322222222},
359 {-0.0774100622222222}, {-0.1008079922222222}, {-0.0671606122222222}, {-0.0905585422222222},
360 {-0.1139564722222222}, {-0.0803090922222222}, {-0.1037070222222222}, {-0.1271049522222222}};
362 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
363 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.221245327087672e-12, 2.787214903321455e-12,
364 6.361189353043528e-12, 1.941724558918168e-12, 4.431566225093775e-12,
365 1.011390970973025e-11, 3.087252675726404e-12, 7.045919403481093e-12,
366 1.608063682212446e-11, 4.908573547623973e-12, 1.120264991882891e-11,
367 2.556738154524396e-11, 9.214851104388799e-15, 2.103872631664672e-14,
368 4.801714581503802e-14, 1.465494392505207e-14, 3.347322419244847e-14,
369 7.638334409421077e-14, 2.331468351712829e-14, 5.3179682879545e-14,
370 1.214028877427609e-13, 3.708144902248023e-14, 8.459899447643693e-14,
371 1.930677839823147e-13, 1.054711873393899e-15, 2.386979502944087e-15,
372 5.440092820663267e-15, 1.665334536937735e-15, 3.774758283725532e-15,
373 8.659739592076221e-15, 2.664535259100376e-15, 6.050715484207103e-15,
374 1.376676550535194e-14, 4.218847493575595e-15, 9.603429163007604e-15,
375 2.187139358511558e-14, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
376 2.995577952358275e-09, 6.836670896070984e-09, 1.560302204106634e-08,
377 4.762812699787844e-09, 1.086995016219561e-08, 2.48079912168464e-08,
378 7.572623861307193e-09, 1.728265386358174e-08, 3.944341192552159e-08,
379 1.20400769909601e-08, 2.747851823858838e-08, 6.271296681958916e-08,
380 0.002899872666640546, 0.006593729188420216, 0.01492240094346903,
381 0.004602772033608815, 0.01044306254129324, 0.02351879316771205,
382 0.007298349629951184, 0.01650225678554373, 0.03688192323742007,
383 0.01155424686739143, 0.0259847540081769, 0.05739158511822012};
386 printf(
"\n## Test_sigma_tide_ND\n\n");
395#define COUNT_X_ND 108
396#define TOLERANCE_X_ND 1e-8
398 {-0.120, 0.050, 0.140, -0.900}, {-0.120, 0.050, 0.140, 0.000}, {-0.120, 0.050, 0.140, 0.900},
399 {-0.120, 0.050, 0.160, -0.900}, {-0.120, 0.050, 0.160, 0.000}, {-0.120, 0.050, 0.160, 0.900},
400 {-0.120, 0.050, 0.180, -0.900}, {-0.120, 0.050, 0.180, 0.000}, {-0.120, 0.050, 0.180, 0.900},
401 {-0.120, 0.050, 0.200, -0.900}, {-0.120, 0.050, 0.200, 0.000}, {-0.120, 0.050, 0.200, 0.900},
402 {-0.120, 0.085, 0.140, -0.900}, {-0.120, 0.085, 0.140, 0.000}, {-0.120, 0.085, 0.140, 0.900},
403 {-0.120, 0.085, 0.160, -0.900}, {-0.120, 0.085, 0.160, 0.000}, {-0.120, 0.085, 0.160, 0.900},
404 {-0.120, 0.085, 0.180, -0.900}, {-0.120, 0.085, 0.180, 0.000}, {-0.120, 0.085, 0.180, 0.900},
405 {-0.120, 0.085, 0.200, -0.900}, {-0.120, 0.085, 0.200, 0.000}, {-0.120, 0.085, 0.200, 0.900},
406 {-0.120, 0.120, 0.140, -0.900}, {-0.120, 0.120, 0.140, 0.000}, {-0.120, 0.120, 0.140, 0.900},
407 {-0.120, 0.120, 0.160, -0.900}, {-0.120, 0.120, 0.160, 0.000}, {-0.120, 0.120, 0.160, 0.900},
408 {-0.120, 0.120, 0.180, -0.900}, {-0.120, 0.120, 0.180, 0.000}, {-0.120, 0.120, 0.180, 0.900},
409 {-0.120, 0.120, 0.200, -0.900}, {-0.120, 0.120, 0.200, 0.000}, {-0.120, 0.120, 0.200, 0.900},
410 {0.010, 0.050, 0.140, -0.900}, {0.010, 0.050, 0.140, 0.000}, {0.010, 0.050, 0.140, 0.900},
411 {0.010, 0.050, 0.160, -0.900}, {0.010, 0.050, 0.160, 0.000}, {0.010, 0.050, 0.160, 0.900},
412 {0.010, 0.050, 0.180, -0.900}, {0.010, 0.050, 0.180, 0.000}, {0.010, 0.050, 0.180, 0.900},
413 {0.010, 0.050, 0.200, -0.900}, {0.010, 0.050, 0.200, 0.000}, {0.010, 0.050, 0.200, 0.900},
414 {0.010, 0.085, 0.140, -0.900}, {0.010, 0.085, 0.140, 0.000}, {0.010, 0.085, 0.140, 0.900},
415 {0.010, 0.085, 0.160, -0.900}, {0.010, 0.085, 0.160, 0.000}, {0.010, 0.085, 0.160, 0.900},
416 {0.010, 0.085, 0.180, -0.900}, {0.010, 0.085, 0.180, 0.000}, {0.010, 0.085, 0.180, 0.900},
417 {0.010, 0.085, 0.200, -0.900}, {0.010, 0.085, 0.200, 0.000}, {0.010, 0.085, 0.200, 0.900},
418 {0.010, 0.120, 0.140, -0.900}, {0.010, 0.120, 0.140, 0.000}, {0.010, 0.120, 0.140, 0.900},
419 {0.010, 0.120, 0.160, -0.900}, {0.010, 0.120, 0.160, 0.000}, {0.010, 0.120, 0.160, 0.900},
420 {0.010, 0.120, 0.180, -0.900}, {0.010, 0.120, 0.180, 0.000}, {0.010, 0.120, 0.180, 0.900},
421 {0.010, 0.120, 0.200, -0.900}, {0.010, 0.120, 0.200, 0.000}, {0.010, 0.120, 0.200, 0.900},
422 {0.140, 0.050, 0.140, -0.900}, {0.140, 0.050, 0.140, 0.000}, {0.140, 0.050, 0.140, 0.900},
423 {0.140, 0.050, 0.160, -0.900}, {0.140, 0.050, 0.160, 0.000}, {0.140, 0.050, 0.160, 0.900},
424 {0.140, 0.050, 0.180, -0.900}, {0.140, 0.050, 0.180, 0.000}, {0.140, 0.050, 0.180, 0.900},
425 {0.140, 0.050, 0.200, -0.900}, {0.140, 0.050, 0.200, 0.000}, {0.140, 0.050, 0.200, 0.900},
426 {0.140, 0.085, 0.140, -0.900}, {0.140, 0.085, 0.140, 0.000}, {0.140, 0.085, 0.140, 0.900},
427 {0.140, 0.085, 0.160, -0.900}, {0.140, 0.085, 0.160, 0.000}, {0.140, 0.085, 0.160, 0.900},
428 {0.140, 0.085, 0.180, -0.900}, {0.140, 0.085, 0.180, 0.000}, {0.140, 0.085, 0.180, 0.900},
429 {0.140, 0.085, 0.200, -0.900}, {0.140, 0.085, 0.200, 0.000}, {0.140, 0.085, 0.200, 0.900},
430 {0.140, 0.120, 0.140, -0.900}, {0.140, 0.120, 0.140, 0.000}, {0.140, 0.120, 0.140, 0.900},
431 {0.140, 0.120, 0.160, -0.900}, {0.140, 0.120, 0.160, 0.000}, {0.140, 0.120, 0.160, 0.900},
432 {0.140, 0.120, 0.180, -0.900}, {0.140, 0.120, 0.180, 0.000}, {0.140, 0.120, 0.180, 0.900},
433 {0.140, 0.120, 0.200, -0.900}, {0.140, 0.120, 0.200, 0.000}, {0.140, 0.120, 0.200, 0.900}};
435 11.4845653589999959, 11.4799892999999962, 11.4754132409999965,
436 11.4731352589999958, 11.4685591999999961, 11.4639831409999964,
437 11.4617051589999974, 11.4571290999999977, 11.4525530409999980,
438 11.4502750589999973, 11.4456989999999976, 11.4411229409999979,
439 5.7411743555397914, 5.7365982965397917, 5.7320222375397920,
440 5.7297442555397913, 5.7251681965397916, 5.7205921375397919,
441 5.7183141555397912, 5.7137380965397915, 5.7091620375397918,
442 5.7068840555397911, 5.7023079965397914, 5.6977319375397917,
443 3.9245653590000003, 3.9199893000000001, 3.9154132410000000,
444 3.9131352590000001, 3.9085592000000000, 3.9039831409999999,
445 3.9017051590000000, 3.8971290999999999, 3.8925530409999998,
446 3.8902750589999999, 3.8856989999999998, 3.8811229409999997,
447 0.5645653589999997, 0.5599892999999997, 0.5554132409999997,
448 0.5531352589999997, 0.5485591999999997, 0.5439831409999997,
449 0.5417051589999997, 0.5371290999999997, 0.5325530409999997,
450 0.5302750589999997, 0.5256989999999997, 0.5211229409999997,
451 0.7031120718027679, 0.6985360128027679, 0.6939599538027679,
452 0.6916819718027679, 0.6871059128027679, 0.6825298538027679,
453 0.6802518718027679, 0.6756758128027679, 0.6710997538027679,
454 0.6688217718027679, 0.6642457128027679, 0.6596696538027679,
455 0.7648431367777777, 0.7602670777777777, 0.7556910187777777,
456 0.7534130367777777, 0.7488369777777777, 0.7442609187777777,
457 0.7419829367777777, 0.7374068777777777, 0.7328308187777777,
458 0.7305528367777777, 0.7259767777777777, 0.7214007187777777,
459 3.1645653590000005, 3.1599893000000003, 3.1554132410000002,
460 3.1531352590000004, 3.1485592000000002, 3.1439831410000001,
461 3.1417051590000002, 3.1371291000000001, 3.1325530410000000,
462 3.1302750590000001, 3.1256990000000000, 3.1211229409999999,
463 0.3432504801072668, 0.3386744211072668, 0.3340983621072667,
464 0.3318203801072668, 0.3272443211072668, 0.3226682621072667,
465 0.3203902801072668, 0.3158142211072668, 0.3112381621072667,
466 0.3089601801072668, 0.3043841211072668, 0.2998080621072667,
467 -0.0476568632222222, -0.0522329222222222, -0.0568089812222222,
468 -0.0590869632222222, -0.0636630222222222, -0.0682390812222222,
469 -0.0705170632222222, -0.0750931222222222, -0.0796691812222222,
470 -0.0819471632222222, -0.0865232222222222, -0.0910992812222222};
473 printf(
"\n## Test_x_ND\n\n");
485#define COUNT_X_ND_PRIME 108
486#define TOLERANCE_X_ND_PRIME 1e-8
488 {-0.120, 0.050, 0.140, -0.900}, {-0.120, 0.050, 0.140, 0.000}, {-0.120, 0.050, 0.140, 0.900},
489 {-0.120, 0.050, 0.160, -0.900}, {-0.120, 0.050, 0.160, 0.000}, {-0.120, 0.050, 0.160, 0.900},
490 {-0.120, 0.050, 0.180, -0.900}, {-0.120, 0.050, 0.180, 0.000}, {-0.120, 0.050, 0.180, 0.900},
491 {-0.120, 0.050, 0.200, -0.900}, {-0.120, 0.050, 0.200, 0.000}, {-0.120, 0.050, 0.200, 0.900},
492 {-0.120, 0.085, 0.140, -0.900}, {-0.120, 0.085, 0.140, 0.000}, {-0.120, 0.085, 0.140, 0.900},
493 {-0.120, 0.085, 0.160, -0.900}, {-0.120, 0.085, 0.160, 0.000}, {-0.120, 0.085, 0.160, 0.900},
494 {-0.120, 0.085, 0.180, -0.900}, {-0.120, 0.085, 0.180, 0.000}, {-0.120, 0.085, 0.180, 0.900},
495 {-0.120, 0.085, 0.200, -0.900}, {-0.120, 0.085, 0.200, 0.000}, {-0.120, 0.085, 0.200, 0.900},
496 {-0.120, 0.120, 0.140, -0.900}, {-0.120, 0.120, 0.140, 0.000}, {-0.120, 0.120, 0.140, 0.900},
497 {-0.120, 0.120, 0.160, -0.900}, {-0.120, 0.120, 0.160, 0.000}, {-0.120, 0.120, 0.160, 0.900},
498 {-0.120, 0.120, 0.180, -0.900}, {-0.120, 0.120, 0.180, 0.000}, {-0.120, 0.120, 0.180, 0.900},
499 {-0.120, 0.120, 0.200, -0.900}, {-0.120, 0.120, 0.200, 0.000}, {-0.120, 0.120, 0.200, 0.900},
500 {0.010, 0.050, 0.140, -0.900}, {0.010, 0.050, 0.140, 0.000}, {0.010, 0.050, 0.140, 0.900},
501 {0.010, 0.050, 0.160, -0.900}, {0.010, 0.050, 0.160, 0.000}, {0.010, 0.050, 0.160, 0.900},
502 {0.010, 0.050, 0.180, -0.900}, {0.010, 0.050, 0.180, 0.000}, {0.010, 0.050, 0.180, 0.900},
503 {0.010, 0.050, 0.200, -0.900}, {0.010, 0.050, 0.200, 0.000}, {0.010, 0.050, 0.200, 0.900},
504 {0.010, 0.085, 0.140, -0.900}, {0.010, 0.085, 0.140, 0.000}, {0.010, 0.085, 0.140, 0.900},
505 {0.010, 0.085, 0.160, -0.900}, {0.010, 0.085, 0.160, 0.000}, {0.010, 0.085, 0.160, 0.900},
506 {0.010, 0.085, 0.180, -0.900}, {0.010, 0.085, 0.180, 0.000}, {0.010, 0.085, 0.180, 0.900},
507 {0.010, 0.085, 0.200, -0.900}, {0.010, 0.085, 0.200, 0.000}, {0.010, 0.085, 0.200, 0.900},
508 {0.010, 0.120, 0.140, -0.900}, {0.010, 0.120, 0.140, 0.000}, {0.010, 0.120, 0.140, 0.900},
509 {0.010, 0.120, 0.160, -0.900}, {0.010, 0.120, 0.160, 0.000}, {0.010, 0.120, 0.160, 0.900},
510 {0.010, 0.120, 0.180, -0.900}, {0.010, 0.120, 0.180, 0.000}, {0.010, 0.120, 0.180, 0.900},
511 {0.010, 0.120, 0.200, -0.900}, {0.010, 0.120, 0.200, 0.000}, {0.010, 0.120, 0.200, 0.900},
512 {0.140, 0.050, 0.140, -0.900}, {0.140, 0.050, 0.140, 0.000}, {0.140, 0.050, 0.140, 0.900},
513 {0.140, 0.050, 0.160, -0.900}, {0.140, 0.050, 0.160, 0.000}, {0.140, 0.050, 0.160, 0.900},
514 {0.140, 0.050, 0.180, -0.900}, {0.140, 0.050, 0.180, 0.000}, {0.140, 0.050, 0.180, 0.900},
515 {0.140, 0.050, 0.200, -0.900}, {0.140, 0.050, 0.200, 0.000}, {0.140, 0.050, 0.200, 0.900},
516 {0.140, 0.085, 0.140, -0.900}, {0.140, 0.085, 0.140, 0.000}, {0.140, 0.085, 0.140, 0.900},
517 {0.140, 0.085, 0.160, -0.900}, {0.140, 0.085, 0.160, 0.000}, {0.140, 0.085, 0.160, 0.900},
518 {0.140, 0.085, 0.180, -0.900}, {0.140, 0.085, 0.180, 0.000}, {0.140, 0.085, 0.180, 0.900},
519 {0.140, 0.085, 0.200, -0.900}, {0.140, 0.085, 0.200, 0.000}, {0.140, 0.085, 0.200, 0.900},
520 {0.140, 0.120, 0.140, -0.900}, {0.140, 0.120, 0.140, 0.000}, {0.140, 0.120, 0.140, 0.900},
521 {0.140, 0.120, 0.160, -0.900}, {0.140, 0.120, 0.160, 0.000}, {0.140, 0.120, 0.160, 0.900},
522 {0.140, 0.120, 0.180, -0.900}, {0.140, 0.120, 0.180, 0.000}, {0.140, 0.120, 0.180, 0.900},
523 {0.140, 0.120, 0.200, -0.900}, {0.140, 0.120, 0.200, 0.000}, {0.140, 0.120, 0.200, 0.900}};
525 11.4913585699999974, 11.4679606399999976, 11.4445627099999978,
526 11.4782100899999975, 11.4548121599999977, 11.4314142299999979,
527 11.4650616099999976, 11.4416636799999978, 11.4182657499999980,
528 11.4519131299999959, 11.4285151999999961, 11.4051172699999963,
529 5.7479675665397911, 5.7245696365397913, 5.7011717065397916,
530 5.7348190865397912, 5.7114211565397914, 5.6880232265397916,
531 5.7216706065397913, 5.6982726765397915, 5.6748747465397917,
532 5.7085221265397914, 5.6851241965397916, 5.6617262665397918,
533 3.9313585699999996, 3.9079606399999998, 3.8845627100000000,
534 3.9182100899999996, 3.8948121599999999, 3.8714142300000001,
535 3.9050616099999997, 3.8816636799999999, 3.8582657500000002,
536 3.8919131299999998, 3.8685152000000000, 3.8451172700000003,
537 0.5713585699999997, 0.5479606399999997, 0.5245627099999997,
538 0.5582100899999997, 0.5348121599999996, 0.5114142299999996,
539 0.5450616099999996, 0.5216636799999996, 0.4982657499999996,
540 0.5319131299999997, 0.5085151999999997, 0.4851172699999997,
541 0.7099052828027679, 0.6865073528027679, 0.6631094228027679,
542 0.6967568028027679, 0.6733588728027678, 0.6499609428027678,
543 0.6836083228027678, 0.6602103928027678, 0.6368124628027678,
544 0.6704598428027679, 0.6470619128027679, 0.6236639828027679,
545 0.7716363477777777, 0.7482384177777777, 0.7248404877777777,
546 0.7584878677777777, 0.7350899377777776, 0.7116920077777776,
547 0.7453393877777776, 0.7219414577777776, 0.6985435277777776,
548 0.7321909077777777, 0.7087929777777777, 0.6853950477777777,
549 3.1713585699999998, 3.1479606400000000, 3.1245627100000002,
550 3.1582100899999999, 3.1348121600000001, 3.1114142300000003,
551 3.1450616100000000, 3.1216636800000002, 3.0982657500000004,
552 3.1319131300000000, 3.1085152000000003, 3.0851172700000005,
553 0.3500436911072667, 0.3266457611072667, 0.3032478311072667,
554 0.3368952111072667, 0.3134972811072667, 0.2900993511072667,
555 0.3237467311072668, 0.3003488011072667, 0.2769508711072667,
556 0.3105982511072667, 0.2872003211072667, 0.2638023911072667,
557 -0.0408636522222222, -0.0642615822222222, -0.0876595122222222,
558 -0.0540121322222222, -0.0774100622222222, -0.1008079922222222,
559 -0.0671606122222222, -0.0905585422222222, -0.1139564722222222,
560 -0.0803090922222222, -0.1037070222222222, -0.1271049522222222};
563 printf(
"\n## Test_x_ND_prime\n\n");
575#define COUNT_DELTA2_PRIME 9
576#define TOLERANCE_DELTA2_PRIME 1e-8
578 {-0.120, 0.050}, {-0.120, 0.085}, {-0.120, 0.120}, {0.010, 0.050}, {0.010, 0.085}, {0.010, 0.120},
579 {0.140, 0.050}, {0.140, 0.085}, {0.140, 0.120}};
581 0, 0, 0, 3.246794811282427e-09, 4.64277487690623e-10, 2.064565954817965e-10,
582 0.81248, 0.8124797075947712, 0.7884780818898274};
585 printf(
"\n## Test_delta2_prime\n\n");
595#define COUNT_BARYONIC_MASS_FROM_C 9
596#define TOLERANCE_BARYONIC_MASS_FROM_C 1e-8
598 {0.1400, 1.3500}, {0.1400, 1.6750}, {0.1400, 2.0000}, {0.1700, 1.3500}, {0.1700, 1.6750},
599 {0.1700, 2.0000}, {0.2000, 1.3500}, {0.2000, 1.6750}, {0.2000, 2.0000}};
601 1.4705869140000001, 1.8246170970000000, 2.1786472799999999,
602 1.4973626385000001, 1.8578388292500001, 2.2183150199999999,
603 1.5244686000000001, 1.8914703000000002, 2.2584720000000003};
606 printf(
"\n## Test_baryonic_mass_from_C\n\n");
616#define COUNT_OMEGA_TILDE 7
617#define TOLERANCE_OMEGA_TILDE 1e-8
619 {-0.90}, {-0.60}, {-0.30}, {-0.00}, {0.30}, {0.60}, {0.90}};
621 0.2972594561409131 + I*0.08831455648737546,
622 0.3171300978041187 + I*0.08877332447220707,
623 0.34160908369694554 + I*0.08909934918507662,
624 0.37365201926604874 + I*0.0890130676852164,
625 0.4193077676007321 + I*0.0878758597418964,
626 0.4940799241800059 + I*0.08379761075049783,
627 0.6716700435394974 + I*0.06485409916444959};
630 printf(
"\n## Test_omega_tilde\n\n");
644int main(
int argc,
char *argv[]) {
static void Test_epsilon_tide_ND(void)
bool approximatelyEqual(REAL8 a, REAL8 b, REAL8 epsilon)
#define TOLERANCE_SIGMA_TIDE_ND
int main(int argc, char *argv[])
#define COUNT_DELTA2_PRIME
double input_baryonic_mass_from_C[COUNT_BARYONIC_MASS_FROM_C][2]
#define TOLERANCE_EPSILON_INS_WITH_TORUS_MASS
double expected_epsilon_tide_ND[COUNT_EPSILON_TIDE_ND]
static void Test_sigma_tide_ND(void)
#define TOLERANCE_EPSILON_TIDE_ND
double expected_sigma_tide_with_torus_mass[COUNT_SIGMA_TIDE_WITH_TORUS_MASS]
double input_x_D_prime[COUNT_X_D_PRIME][4]
static void Test_sigma_tide_with_torus_mass(void)
double input_sigma_tide_ND[COUNT_SIGMA_TIDE_ND][1]
double input_x_ND[COUNT_X_ND][4]
#define COUNT_SIGMA_TIDE_WITH_TORUS_MASS
#define COUNT_EPSILON_INS_WITH_TORUS_MASS
#define COUNT_EPSILON_TIDE_ND
#define TOLERANCE_X_D_PRIME
static void Test_x_ND_prime(void)
static void Test_x_D_prime(void)
static void Test_epsilon_ins_with_torus_mass(void)
double input_x_D[COUNT_X_D][4]
void print_difference(const char *name, REAL8 u, REAL8 u_expected)
double expected_baryonic_mass_from_C[COUNT_BARYONIC_MASS_FROM_C]
double input_sigma_tide_with_torus_mass[COUNT_SIGMA_TIDE_WITH_TORUS_MASS][4]
double input_omega_tilde[COUNT_OMEGA_TILDE][1]
static void Test_delta2_prime(void)
double input_x_ND_prime[COUNT_X_ND_PRIME][4]
double expected_epsilon_ins_with_torus_mass[COUNT_EPSILON_INS_WITH_TORUS_MASS]
double expected_delta2_prime[COUNT_DELTA2_PRIME]
static void Test_baryonic_mass_from_C(void)
#define TOLERANCE_DELTA2_PRIME
double input_epsilon_tide_ND[COUNT_EPSILON_TIDE_ND][1]
double input_delta2_prime[COUNT_DELTA2_PRIME][2]
double expected_x_ND[COUNT_X_ND]
#define TOLERANCE_OMEGA_TILDE
#define COUNT_BARYONIC_MASS_FROM_C
double expected_sigma_tide_ND[COUNT_SIGMA_TIDE_ND]
double expected_x_D_prime[COUNT_X_D_PRIME]
COMPLEX16 expected_omega_tilde[COUNT_OMEGA_TILDE]
#define TOLERANCE_SIGMA_TIDE_WITH_TORUS_MASS
static void Test_omega_tilde(void)
#define TOLERANCE_X_ND_PRIME
double input_epsilon_ins_with_torus_mass[COUNT_EPSILON_INS_WITH_TORUS_MASS][4]
#define TOLERANCE_BARYONIC_MASS_FROM_C
static void Test_x_ND(void)
#define COUNT_OMEGA_TILDE
double expected_x_D[COUNT_X_D]
double expected_x_ND_prime[COUNT_X_ND_PRIME]
static void Test_x_D(void)
#define COUNT_SIGMA_TIDE_ND
double XLALSimIMRPhenomNSBH_sigma_tide_with_torus_mass(const REAL8 Mtorus, const REAL8 C, const REAL8 q, const REAL8 chi)
Correction to ringdown Lorentzian width for disruptive mergers.
double XLALSimIMRPhenomNSBH_sigma_tide_ND(const REAL8 x_ND_prime)
Correction to ringdown Lorentzian width for nondisruptive mergers.
double XLALSimIMRPhenomNSBH_x_D(const REAL8 Mtorus, const REAL8 C, const REAL8 q, const REAL8 chi)
Convenience function for expression appearing in disruptive merger.
double XLALSimIMRPhenomNSBH_x_ND_prime(const REAL8 f_tide, const REAL8 f_RD_tilde, const REAL8 C, const REAL8 chi)
Convinience function for expression appearing in disruptive merger.
double XLALSimIMRPhenomNSBH_baryonic_mass_from_C(const REAL8 C, const REAL8 Mg)
NS baryonic mass as a function of NS gravitational mass.
double XLALSimIMRPhenomNSBH_x_ND(const REAL8 f_tide, const REAL8 f_RD_tilde, const REAL8 C, const REAL8 chi)
Convinience function for expression appearing in disruptive merger.
COMPLEX16 XLALSimIMRPhenomNSBH_omega_tilde(const REAL8 a)
220 quasi-normal mode dimensionless frequency
double XLALSimIMRPhenomNSBH_epsilon_ins_with_torus_mass(const REAL8 Mtorus, const REAL8 C, const REAL8 q, const REAL8 chi)
Correction to the inspiral transition frequency with spin contributions.
double XLALSimIMRPhenomNSBH_epsilon_tide_ND(const REAL8 x_ND)
PhenomC parameter delta_1 NSBH correction factor.
double XLALSimIMRPhenomNSBH_delta2_prime(const REAL8 f_tide, const REAL8 f_RD_tilde)
Fitted coefficient for PhenomC Lorentzian.
double XLALSimIMRPhenomNSBH_x_D_prime(const REAL8 Mtorus, const REAL8 C, const REAL8 q, const REAL8 chi)
Convinience function for expression appearing in disruptive merger.
#define XLAL_CHECK_EXIT(assertion)
char output[FILENAME_MAX]