Loading [MathJax]/extensions/TeX/AMSsymbols.js
LALSimulation 6.2.0.1-ea7c608
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
exact_derivatives-s1x.c File Reference

Go to the source code of this file.

Variables

const double sigmaKerrdata0prm = 1.0
 
const double sigmaStardata0prm = mass2overmass1
 
const double s1dots1prm = 2*s1Vec->data[0]
 
const double sKerrUSCORExprm = sigmaKerrdata0prm
 
const double sStarUSCORExprm = sigmaStardata0prm
 
const double a2prm = 2*sKerrUSCOREx*sKerrUSCORExprm
 
const double a4prm = 2*a2*a2prm
 
const double aprm = a2prm/(2.*Sqrt(a2))
 
const double coeffsk2prm = c1k2*a2prm
 
const double coeffsk3prm = c1k3*a2prm
 
const double coeffsk4prm = c1k4*a2prm + c2k4*a4prm
 
const double coeffsk5prm = c1k5*a2prm + c2k5*a4prm
 
const double costhetaprm = nx*e3USCORExprm + ny*e3USCOREyprm + nz*e3USCOREzprm
 
const double xi2prm = -2*costheta*costhetaprm
 
const double xiUSCORExprm = nz*e3USCOREyprm - ny*e3USCOREzprm
 
const double xiUSCOREyprm = -(nz*e3USCORExprm) + nx*e3USCOREzprm
 
const double xiUSCOREzprm = ny*e3USCORExprm - nx*e3USCOREyprm
 
const double vxprm = -(nz*xiUSCOREyprm) + ny*xiUSCOREzprm
 
const double vyprm = nz*xiUSCORExprm - nx*xiUSCOREzprm
 
const double vzprm = -(ny*xiUSCORExprm) + nx*xiUSCOREyprm
 
const double w2prm = a2prm
 
const double rho2prm = costheta*(costheta*a2prm + 2*a2*costhetaprm)
 
const double bulkprm = u2*a2prm
 
const double logargprm = u2*coeffsk2prm + u3*coeffsk3prm + u4*coeffsk4prm + u5*coeffsk5prm
 
const double onepluslogargprm = logargprm
 
const double invonepluslogargprm = (-onepluslogargprm)/((onepluslogarg)*(onepluslogarg))
 
const double logTermsprm = (eta*onepluslogargprm)/onepluslogarg
 
const double deltaUprm = logTerms*bulkprm + bulk*logTermsprm
 
const double deltaTprm = r2*deltaUprm
 
const double deltaUUSCOREupt7prm = coeffsk5prm
 
const double deltaUUSCOREupt6prm = 4.*coeffsk4prm + 5.*u*deltaUUSCOREupt7prm
 
const double deltaUUSCOREupt5prm = 3.*coeffsk3prm + u*deltaUUSCOREupt6prm
 
const double deltaUUSCOREupt4prm = 2.*coeffsk2prm + u*deltaUUSCOREupt5prm
 
const double deltaUUSCOREupt3prm = u*deltaUUSCOREupt4prm
 
const double deltaUUSCOREupt2prm = u*a2prm
 
const double deltaUUSCOREupt1prm = eta*(deltaUUSCOREupt3*bulkprm + bulk*deltaUUSCOREupt3prm)
 
const double deltaUUSCOREuprm = invonepluslogarg*deltaUUSCOREupt1prm + 2.*logTerms*deltaUUSCOREupt2prm + deltaUUSCOREupt1*invonepluslogargprm + 2.*deltaUUSCOREupt2*logTermsprm
 
const double deltaTUSCORErprm = 2.*r*deltaUprm - deltaUUSCOREuprm
 
const double Lambdaprm = -(a2*xi2*deltaTprm) + 2*w2*w2prm - deltaT*(xi2*a2prm + a2*xi2prm)
 
const double rho2xi2Lambdaprm = Lambda*xi2*rho2prm + rho2*(xi2*Lambdaprm + Lambda*xi2prm)
 
const double invrho2xi2Lambdaprm = (-rho2xi2Lambdaprm)/((rho2xi2Lambda)*(rho2xi2Lambda))
 
const double invrho2prm = invrho2xi2Lambda*xi2*Lambdaprm + Lambda*(xi2*invrho2xi2Lambdaprm + invrho2xi2Lambda*xi2prm)
 
const double invxi2prm = invrho2xi2Lambda*rho2*Lambdaprm + Lambda*(rho2*invrho2xi2Lambdaprm + invrho2xi2Lambda*rho2prm)
 
const double invLambdaprm = invrho2xi2Lambda*xi2*rho2prm + rho2*(xi2*invrho2xi2Lambdaprm + invrho2xi2Lambda*xi2prm)
 
const double invLambdasqprm = 2*invLambda*invLambdaprm
 
const double rho2invLambdaprm = rho2*invLambdaprm + invLambda*rho2prm
 
const double expnuprm = (rho2invLambda*deltaTprm + deltaT*rho2invLambdaprm)/(2.*Sqrt(deltaT*rho2invLambda))
 
const double expMUprm = rho2prm/(2.*Sqrt(rho2))
 
const double expMUexpnuprm = expnu*expMUprm + expMU*expnuprm
 
const double expMUsqprm = 2*expMU*expMUprm
 
const double expnusqprm = 2*expnu*expnuprm
 
const double expMUsqexpnusqprm = expnusq*expMUsqprm + expMUsq*expnusqprm
 
const double invexpnuexpMUprm = (-expMUexpnuprm)/((expMUexpnu)*(expMUexpnu))
 
const double invexpMUprm = invexpnuexpMU*expnuprm + expnu*invexpnuexpMUprm
 
const double invexpMUsqprm = 2*invexpMU*invexpMUprm
 
const double expnuinvexpMU2prm = invexpMUsq*expnuprm + expnu*invexpMUsqprm
 
const double invexpMUcubinvexpnuprm = invexpnuexpMU*invexpMUsqprm + invexpMUsq*invexpnuexpMUprm
 
const double deltaRprm = DD*deltaTprm
 
const double wwprm = (2.*r + coeffs->bb3*eta*u + coeffs->b3*eta*u*a2)*aprm + coeffs->b3*eta*u*a*a2prm
 
const double Bprm = deltaTprm/(2.*Sqrt(deltaT))
 
const double sqrtdeltaTprm = Bprm
 
const double sqrtdeltaRprm = deltaRprm/(2.*Sqrt(deltaR))
 
const double deltaTsqrtdeltaRprm = sqrtdeltaR*deltaTprm + deltaT*sqrtdeltaRprm
 
const double sqrtdeltaTdeltaTsqrtdeltaRprm = sqrtdeltaT*deltaTsqrtdeltaRprm + deltaTsqrtdeltaR*sqrtdeltaTprm
 
const double invdeltaTsqrtdeltaTsqrtdeltaRprm = (-sqrtdeltaTdeltaTsqrtdeltaRprm)/((sqrtdeltaTdeltaTsqrtdeltaR)*(sqrtdeltaTdeltaTsqrtdeltaR))
 
const double invdeltaTprm = invdeltaTsqrtdeltaTsqrtdeltaR*sqrtdeltaT*sqrtdeltaRprm + sqrtdeltaR*(sqrtdeltaT*invdeltaTsqrtdeltaTsqrtdeltaRprm + invdeltaTsqrtdeltaTsqrtdeltaR*sqrtdeltaTprm)
 
const double invsqrtdeltaTprm = invdeltaTsqrtdeltaTsqrtdeltaR*deltaTsqrtdeltaRprm + deltaTsqrtdeltaR*invdeltaTsqrtdeltaTsqrtdeltaRprm
 
const double invsqrtdeltaRprm = deltaT*sqrtdeltaT*invdeltaTsqrtdeltaTsqrtdeltaRprm + invdeltaTsqrtdeltaTsqrtdeltaR*(sqrtdeltaT*deltaTprm + deltaT*sqrtdeltaTprm)
 
const double wprm = ww*invLambdaprm + invLambda*wwprm
 
const double LambdaUSCORErprm = -(a2*xi2*deltaTUSCORErprm) + 4.*r*w2prm - deltaTUSCOREr*(xi2*a2prm + a2*xi2prm)
 
const double wwUSCORErprm = -(-2. + coeffs->bb3*eta*u2 + coeffs->b3*eta*u2*a2)*aprm - coeffs->b3*eta*u2*a*a2prm
 
const double BRprm = -invsqrtdeltaT*(invsqrtdeltaR*deltaTprm - 0.5*deltaTUSCORErprm + deltaT*invsqrtdeltaRprm) + (0.5*deltaTUSCOREr - deltaT*invsqrtdeltaR)*invsqrtdeltaTprm
 
const double wrprm = (-(LambdaUSCOREr*ww) + Lambda*wwUSCOREr)*invLambdasqprm + invLambdasq*(wwUSCOREr*Lambdaprm - ww*LambdaUSCORErprm - LambdaUSCOREr*wwprm + Lambda*wwUSCORErprm)
 
const double nurpt2prm = ((w2)*(w2))*deltaTUSCORErprm - 4.*r*deltaT*w2prm + w2*(-4.*r*deltaTprm + 2*deltaTUSCOREr*w2prm)
 
const double nurpt1prm = nurpt2*invdeltaTprm + invdeltaT*nurpt2prm
 
const double nurprm = 0.5*nurpt1*invLambdaprm + r*invrho2prm + 0.5*invLambda*nurpt1prm
 
const double murprm = r*invrho2prm - invsqrtdeltaRprm
 
const double a2costhetaprm = costheta*a2prm + a2*costhetaprm
 
const double wcospt2prm = ww*deltaTprm + deltaT*wwprm
 
const double wcospt1prm = wcospt2*invLambdasqprm + invLambdasq*wcospt2prm
 
const double wcosprm = -2.*wcospt1*a2costhetaprm - 2.*a2costheta*wcospt1prm
 
const double nucospt3prm = invrho2*invLambdaprm + invLambda*invrho2prm
 
const double nucospt2prm = w2*nucospt3prm + nucospt3*w2prm
 
const double nucospt1prm = nucospt2*a2costhetaprm + a2costheta*nucospt2prm
 
const double nucosprm = (-deltaT + w2)*nucospt1prm + nucospt1*(-deltaTprm + w2prm)
 
const double mucosprm = invrho2*a2costhetaprm + a2costheta*invrho2prm
 
const double csiprm = (deltaR*w2*deltaTprm + deltaT*(w2*deltaRprm - 2*deltaR*w2prm))/(2.*Sqrt(deltaR*deltaT)*((w2)*(w2)))
 
const double csi1prm = (1.-fabs(1.-tortoise)) * (csiprm)
 
const double csi2prm = (0.5-copysign(0.5, 1.5-tortoise)) * (csiprm)
 
const double prTprm = (nx*p->data[0] + ny*p->data[1] + nz*p->data[2])*csi2prm
 
const double prTtimesoneminuscsi1invprm = (prT*csi1prm)/((csi1)*(csi1)) + (1. - 1./csi1)*prTprm
 
const double tmpP0prm = -(nx*prTtimesoneminuscsi1invprm)
 
const double tmpP1prm = -(ny*prTtimesoneminuscsi1invprm)
 
const double tmpP2prm = -(nz*prTtimesoneminuscsi1invprm)
 
const double pxirprm = r*(xiUSCOREx*tmpP0prm + xiUSCOREy*tmpP1prm + xiUSCOREz*tmpP2prm + tmpP0*xiUSCORExprm + tmpP1*xiUSCOREyprm + tmpP2*xiUSCOREzprm)
 
const double pvrprm = r*(vx*tmpP0prm + vy*tmpP1prm + vz*tmpP2prm + tmpP0*vxprm + tmpP1*vyprm + tmpP2*vzprm)
 
const double pvrsqprm = 2*pvr*pvrprm
 
const double pnprm = nx*tmpP0prm + ny*tmpP1prm + nz*tmpP2prm
 
const double pnsqprm = 2*pn*pnprm
 
const double prprm = pnprm
 
const double prsqprm = 2*pr*prprm
 
const double pfprm = pxirprm
 
const double pxirsqprm = 2*pxir*pxirprm
 
const double ptheta2prm = pvrsq*invxi2prm + invxi2*pvrsqprm
 
const double prT4prm = 4*((prT)*(prT)*(prT))*prTprm
 
const double Hnspt7prm = invrho2*deltaRprm + deltaR*invrho2prm
 
const double Hnspt6prm = rho2invLambda*invxi2prm + invxi2*rho2invLambdaprm
 
const double Hnspt4prm = ((pf)*(pf))*Hnspt6prm + prsq*Hnspt7prm + ptheta2*invrho2prm + 2*Hnspt6*pf*pfprm + Hnspt7*prsqprm + Hnspt5*prT4prm + invrho2*ptheta2prm
 
const double Hnspt3prm = Hnspt4*deltaTprm + deltaT*Hnspt4prm
 
const double Hnspt2prm = rho2*Hnspt3prm + Hnspt3*rho2prm
 
const double Hnspt1prm = ww*pfprm + pf*wwprm
 
const double Hnsprm = invLambda*Hnspt1prm + Hnspt1*invLambdaprm + (invLambda*Hnspt2prm + Hnspt2*invLambdaprm)/(2.*Sqrt(Hnspt2*invLambda))
 
const double Qpt3prm = invrho2*deltaRprm + deltaR*invrho2prm
 
const double Qpt2prm = rho2invLambda*invxi2prm + invxi2*rho2invLambdaprm
 
const double Qpt1prm = invxi2*invrho2prm + invrho2*invxi2prm
 
const double Qprm = Qpt3*pnsqprm + Qpt1*pvrsqprm + Qpt2*pxirsqprm + pvrsq*Qpt1prm + pxirsq*Qpt2prm + pnsq*Qpt3prm
 
const double pn2prm = deltaR*prsq*invrho2prm + invrho2*(prsq*deltaRprm + deltaR*prsqprm)
 
const double ppprm = Qprm
 
const double sKerrmultfactprm = -36.*r*pn2prm + 3.*r*ppprm
 
const double sStarmultfactprm = r*(-30.*pn2prm + 4.*ppprm)
 
const double deltaSigmaStarUSCOREx1prm = etaover12r*(sKerrUSCOREx*sKerrmultfactprm + sKerrmultfact*sKerrUSCORExprm + sStarUSCOREx*sStarmultfactprm + sStarmultfact*sStarUSCORExprm)
 
const double deltaSigmaStarUSCOREy1prm = etaover12r*(sKerrUSCOREy*sKerrmultfactprm + sStarUSCOREy*sStarmultfactprm)
 
const double deltaSigmaStarUSCOREz1prm = etaover12r*(sKerrUSCOREz*sKerrmultfactprm + sStarUSCOREz*sStarmultfactprm)
 
const double pn2ppprm = pp*pn2prm + pn2*ppprm
 
const double pp2prm = 2*pp*ppprm
 
const double pn2u2prm = u2*pn2prm
 
const double ppu2prm = u2*ppprm
 
const double pn2ppu2prm = u2*pn2ppprm
 
const double sMultiplier1pt6prm = -720.*pn2*pn2prm + 126.*pn2ppprm + 3.*pp2prm
 
const double sMultiplier1pt5prm = -96.*pn2ppprm + 23.*pp2prm
 
const double sMultiplier1pt4prm = 324.*pn2prm - 120.*ppprm + r*sMultiplier1pt6prm
 
const double sMultiplier1pt3prm = -282.*pn2prm + 206.*ppprm + r*sMultiplier1pt5prm
 
const double sMultiplier1pt2prm = r*sMultiplier1pt4prm
 
const double sMultiplier1pt1prm = eta*sMultiplier1pt2prm + r*sMultiplier1pt3prm
 
const double sMultiplier1prm = -0.013888888888888888*eta*u2*sMultiplier1pt1prm
 
const double sMultiplier2pt6prm = 5.625*pn2u2*pn2prm - 1.625*pn2ppu2prm + 5.625*pn2*pn2u2prm
 
const double sMultiplier2pt5prm = 0.25*pn2ppu2prm - 0.3125*u2*pp2prm
 
const double sMultiplier2pt4prm = -6.125*pn2u2prm + 1.4166666666666665*ppu2prm + r*sMultiplier2pt6prm
 
const double sMultiplier2pt3prm = -0.6666666666666666*pn2u2prm - 3.0277777777777777*ppu2prm + r*sMultiplier2pt5prm
 
const double sMultiplier2pt2prm = r*sMultiplier2pt4prm
 
const double sMultiplier2pt1prm = eta*sMultiplier2pt2prm + r*sMultiplier2pt3prm
 
const double sMultiplier2prm = eta*sMultiplier2pt1prm
 
const double deltaSigmaStarUSCOREx2prm = deltaSigmaStarUSCOREx1prm + sMultiplier2*sigmaKerrdata0prm + sMultiplier1*sigmaStardata0prm + sigmaStar->data[0]*sMultiplier1prm + sigmaKerr->data[0]*sMultiplier2prm
 
const double deltaSigmaStarUSCOREy2prm = deltaSigmaStarUSCOREy1prm + sigmaStar->data[1]*sMultiplier1prm + sigmaKerr->data[1]*sMultiplier2prm
 
const double deltaSigmaStarUSCOREz2prm = deltaSigmaStarUSCOREz1prm + sigmaStar->data[2]*sMultiplier1prm + sigmaKerr->data[2]*sMultiplier2prm
 
const double deltaSigmaStarUSCOREx3prm = deltaSigmaStarUSCOREx2prm + coeffs->d1*etau3*sigmaStardata0prm
 
const double deltaSigmaStarUSCOREy3prm = deltaSigmaStarUSCOREy2prm
 
const double deltaSigmaStarUSCOREz3prm = deltaSigmaStarUSCOREz2prm
 
const double deltaSigmaStarUSCORExprm = deltaSigmaStarUSCOREx3prm + coeffs->d1v2*etau3*sigmaKerrdata0prm
 
const double deltaSigmaStarUSCOREyprm = deltaSigmaStarUSCOREy3prm
 
const double deltaSigmaStarUSCOREzprm = deltaSigmaStarUSCOREz3prm
 
const double sxprm = deltaSigmaStarUSCORExprm + sStarUSCORExprm
 
const double syprm = deltaSigmaStarUSCOREyprm
 
const double szprm = deltaSigmaStarUSCOREzprm
 
const double sxiprm = xiUSCOREx*sxprm + xiUSCOREy*syprm + xiUSCOREz*szprm + sx*xiUSCORExprm + sy*xiUSCOREyprm + sz*xiUSCOREzprm
 
const double svprm = vx*sxprm + vy*syprm + vz*szprm + sx*vxprm + sy*vyprm + sz*vzprm
 
const double snprm = nx*sxprm + ny*syprm + nz*szprm
 
const double s3prm = sx*e3USCORExprm + sy*e3USCOREyprm + sz*e3USCOREzprm + e3USCOREx*sxprm + e3USCOREy*syprm + e3USCOREz*szprm
 
const double sqrtQprm = Qprm/(2.*Sqrt(Q))
 
const double oneplus2sqrtQprm = 2.*sqrtQprm
 
const double oneplus1sqrtQprm = oneplus2sqrtQprm - sqrtQprm
 
const double twoB1psqrtQsqrtQprm = 2.*B*sqrtQ*oneplus1sqrtQprm + oneplus1sqrtQ*(2.*sqrtQ*Bprm + 2.*B*sqrtQprm)
 
const double invtwoB1psqrtQsqrtQprm = (-twoB1psqrtQsqrtQprm)/((twoB1psqrtQsqrtQ)*(twoB1psqrtQsqrtQ))
 
const double expMUsqsqrtQplusQprm = (Q + sqrtQ)*expMUsqprm + expMUsq*(Qprm + sqrtQprm)
 
const double Hwrpt4aprm = sv*pxirsqprm + pxirsq*svprm
 
const double Hwrpt4prm = Hwrpt4a*expMUsqexpnusqprm + expMUsqexpnusq*Hwrpt4aprm
 
const double Hwrpt3cprm = sxi*pxirprm + pxir*sxiprm
 
const double Hwrpt3bprm = pvr*Hwrpt3cprm + Hwrpt3c*pvrprm
 
const double Hwrpt3aprm = Hwrpt3b*expMUexpnuprm + expMUexpnu*Hwrpt3bprm
 
const double Hwrpt3prm = Hwrpt3a*Bprm + B*Hwrpt3aprm
 
const double Hwrpt2gprm = sv*deltaRprm + deltaR*svprm
 
const double Hwrpt2fprm = sqrtdeltaR*snprm + sn*sqrtdeltaRprm
 
const double Hwrpt2eprm = pvr*Hwrpt2fprm + Hwrpt2f*pvrprm
 
const double Hwrpt2dprm = pnsq*Hwrpt2gprm + Hwrpt2g*pnsqprm
 
const double Hwrpt2cprm = pn*Hwrpt2eprm + Hwrpt2e*pnprm
 
const double Hwrpt2bprm = sv*expMUsqsqrtQplusQprm + expMUsqsqrtQplusQ*svprm
 
const double Hwrpt2aprm = xi2*(Hwrpt2bprm + Hwrpt2cprm - Hwrpt2dprm) + (Hwrpt2b + Hwrpt2c - Hwrpt2d)*xi2prm
 
const double Hwrpt2prm = Hwrpt2a*deltaTprm + deltaT*Hwrpt2aprm
 
const double Hwrpt1bprm = invxi2*invtwoB1psqrtQsqrtQprm + invtwoB1psqrtQsqrtQ*invxi2prm
 
const double Hwrpt1aprm = sqrtdeltaR*Hwrpt1bprm + Hwrpt1b*sqrtdeltaRprm
 
const double Hwrpt1prm = invexpMUcubinvexpnu*Hwrpt1aprm + Hwrpt1a*invexpMUcubinvexpnuprm
 
const double Hwrprm = (Hwrpt2 - Hwrpt3 + Hwrpt4)*Hwrpt1prm + Hwrpt1*(Hwrpt2prm - Hwrpt3prm + Hwrpt4prm)
 
const double Hwcospt9prm = sxi*pxirprm + pxir*sxiprm
 
const double Hwcospt8prm = sv*pvrprm + pvr*svprm
 
const double Hwcospt7prm = Hwcospt8*Bprm - Hwcospt9*expMUexpnuprm + B*Hwcospt8prm - expMUexpnu*Hwcospt9prm
 
const double Hwcospt6prm = sqrtdeltaR*Hwcospt7prm + Hwcospt7*sqrtdeltaRprm
 
const double Hwcospt5prm = -(xi2*expMUsqsqrtQplusQprm) + pvrsqprm - expMUsqsqrtQplusQ*xi2prm
 
const double Hwcospt4prm = pn*Hwcospt6prm + Hwcospt6*pnprm
 
const double Hwcospt3prm = Hwcospt5*deltaTprm - pxirsq*expMUsqexpnusqprm + deltaT*Hwcospt5prm - expMUsqexpnusq*pxirsqprm
 
const double Hwcospt2prm = -(Hwcospt4*Bprm) + sn*Hwcospt3prm - B*Hwcospt4prm + Hwcospt3*snprm
 
const double Hwcospt1prm = invexpMUcubinvexpnu*Hwcospt2prm + Hwcospt2*invexpMUcubinvexpnuprm
 
const double Hwcosprm = invtwoB1psqrtQsqrtQ*Hwcospt1prm + Hwcospt1*invtwoB1psqrtQsqrtQprm
 
const double deltaTsqrtQprm = sqrtQ*deltaTprm + deltaT*sqrtQprm
 
const double invdeltatTsqrtQprm = (-deltaTsqrtQprm)/((deltaTsqrtQ)*(deltaTsqrtQ))
 
const double HSOLpt5prm = pxir*(-Bprm + expMUexpnuprm) + (-B + expMUexpnu)*pxirprm
 
const double HSOLpt4prm = invexpMU*HSOLpt5prm + HSOLpt5*invexpMUprm
 
const double HSOLpt3prm = HSOLpt4*expnusqprm + expnusq*HSOLpt4prm
 
const double HSOLpt2prm = s3*HSOLpt3prm + HSOLpt3*s3prm
 
const double HSOLpt1prm = invxi2*HSOLpt2prm + HSOLpt2*invxi2prm
 
const double HSOLprm = invdeltatTsqrtQ*HSOLpt1prm + HSOLpt1*invdeltatTsqrtQprm
 
const double deltaTsqrtQplusQprm = (Q + sqrtQ)*deltaTprm + deltaT*(Qprm + sqrtQprm)
 
const double invdeltaTsqrtQplusQprm = (-deltaTsqrtQplusQprm)/((deltaTsqrtQplusQ)*(deltaTsqrtQplusQ))
 
const double HSONLmult2prm = invxi2*invdeltaTsqrtQplusQprm + invdeltaTsqrtQplusQ*invxi2prm
 
const double HSONLmultprm = HSONLmult2*expnuinvexpMU2prm + expnuinvexpMU2*HSONLmult2prm
 
const double HSONLpt1bprm = xi2*pnprm + pn*xi2prm
 
const double HSONLpt1aprm = (-mucos + nucos)*HSONLpt1bprm + pvr*murprm + HSONLpt1b*(-mucosprm + nucosprm) - pvr*nurprm + mur*pvrprm - nur*pvrprm
 
const double HSONLpt1prm = sqrtQ*HSONLpt1aprm - mucos*HSONLpt1bprm - HSONLpt1b*mucosprm + pvr*murprm + mur*pvrprm + HSONLpt1a*sqrtQprm
 
const double HSONLpt2dprm = pxir*nurprm + nur*pxirprm
 
const double HSONLpt2cprm = oneplus2sqrtQ*HSONLpt2dprm + HSONLpt2d*oneplus2sqrtQprm
 
const double HSONLpt2bprm = sxi*Bprm + B*sxiprm
 
const double HSONLpt2aprm = HSONLpt2c*expMUexpnuprm + expMUexpnu*HSONLpt2cprm
 
const double HSONLpt2prm = HSONLpt2b*HSONLpt1prm + sv*HSONLpt2aprm + HSONLpt1*HSONLpt2bprm + HSONLpt2a*svprm
 
const double HSONLpt3cprm = sv*pxirprm + pxir*svprm
 
const double HSONLpt3bprm = oneplus1sqrtQ*HSONLpt3cprm + HSONLpt3c*oneplus1sqrtQprm
 
const double HSONLpt3aprm = HSONLpt3b*expMUexpnuprm + expMUexpnu*HSONLpt3bprm
 
const double HSONLpt3prm = HSONLpt2*Bprm - HSONLpt3a*BRprm + B*HSONLpt2prm - BR*HSONLpt3aprm
 
const double HSONLpt4eprm = xi2*snprm + sn*xi2prm
 
const double HSONLpt4dprm = oneplus2sqrtQ*HSONLpt4eprm + HSONLpt4e*oneplus2sqrtQprm
 
const double HSONLpt4cprm = pxir*HSONLpt4dprm + HSONLpt4d*pxirprm
 
const double HSONLpt4bprm = nucos*HSONLpt4cprm + HSONLpt4c*nucosprm
 
const double HSONLpt4aprm = HSONLpt4b*expMUexpnuprm + expMUexpnu*HSONLpt4bprm
 
const double HSONLpt4prm = -(HSONLpt4a*Bprm) + sqrtdeltaR*HSONLpt3prm - B*HSONLpt4aprm + HSONLpt3*sqrtdeltaRprm
 
const double HSONLprm = HSONLpt4*HSONLmultprm + HSONLmult*HSONLpt4prm
 
const double Hsprm = HSOLprm + HSONLprm + wcos*Hwcosprm + wr*Hwrprm + w*s3prm + s3*wprm + Hwcos*wcosprm + Hwr*wrprm
 
const double Hsspt1prm = -0.5*(-6.*sn*snprm + 2*(sx*sxprm + sy*syprm + sz*szprm))
 
const double Hssprm = u3*Hsspt1prm
 
const double sKerrdotsStarprm = sStarUSCOREx*sKerrUSCORExprm + sKerrUSCOREx*sStarUSCORExprm
 
const double Hpt1prm = etau4*s1dots1prm
 
const double Hprm = Hnsprm + (coeffs->dheffSSv2 + coeffs->dheffSS*sKerrdotsStar)*Hpt1prm + Hsprm + Hssprm + coeffs->dheffSS*Hpt1*sKerrdotsStarprm
 
const double Hrealprm = (eta*Hprm)*invHreal
 

Variable Documentation

◆ sigmaKerrdata0prm

const double sigmaKerrdata0prm = 1.0

Definition at line 1 of file exact_derivatives-s1x.c.

◆ sigmaStardata0prm

const double sigmaStardata0prm = mass2overmass1

Definition at line 2 of file exact_derivatives-s1x.c.

◆ s1dots1prm

const double s1dots1prm = 2*s1Vec->data[0]

Definition at line 3 of file exact_derivatives-s1x.c.

◆ sKerrUSCORExprm

const double sKerrUSCORExprm = sigmaKerrdata0prm

Definition at line 4 of file exact_derivatives-s1x.c.

◆ sStarUSCORExprm

const double sStarUSCORExprm = sigmaStardata0prm

Definition at line 5 of file exact_derivatives-s1x.c.

◆ a2prm

const double a2prm = 2*sKerrUSCOREx*sKerrUSCORExprm

Definition at line 6 of file exact_derivatives-s1x.c.

◆ a4prm

const double a4prm = 2*a2*a2prm

Definition at line 7 of file exact_derivatives-s1x.c.

◆ aprm

const double aprm = a2prm/(2.*Sqrt(a2))

Definition at line 8 of file exact_derivatives-s1x.c.

◆ coeffsk2prm

const double coeffsk2prm = c1k2*a2prm

Definition at line 9 of file exact_derivatives-s1x.c.

◆ coeffsk3prm

const double coeffsk3prm = c1k3*a2prm

Definition at line 10 of file exact_derivatives-s1x.c.

◆ coeffsk4prm

const double coeffsk4prm = c1k4*a2prm + c2k4*a4prm

Definition at line 11 of file exact_derivatives-s1x.c.

◆ coeffsk5prm

const double coeffsk5prm = c1k5*a2prm + c2k5*a4prm

Definition at line 12 of file exact_derivatives-s1x.c.

◆ costhetaprm

const double costhetaprm = nx*e3USCORExprm + ny*e3USCOREyprm + nz*e3USCOREzprm

Definition at line 13 of file exact_derivatives-s1x.c.

◆ xi2prm

const double xi2prm = -2*costheta*costhetaprm

Definition at line 14 of file exact_derivatives-s1x.c.

◆ xiUSCORExprm

const double xiUSCORExprm = nz*e3USCOREyprm - ny*e3USCOREzprm

Definition at line 15 of file exact_derivatives-s1x.c.

◆ xiUSCOREyprm

const double xiUSCOREyprm = -(nz*e3USCORExprm) + nx*e3USCOREzprm

Definition at line 16 of file exact_derivatives-s1x.c.

◆ xiUSCOREzprm

const double xiUSCOREzprm = ny*e3USCORExprm - nx*e3USCOREyprm

Definition at line 17 of file exact_derivatives-s1x.c.

◆ vxprm

const double vxprm = -(nz*xiUSCOREyprm) + ny*xiUSCOREzprm

Definition at line 18 of file exact_derivatives-s1x.c.

◆ vyprm

const double vyprm = nz*xiUSCORExprm - nx*xiUSCOREzprm

Definition at line 19 of file exact_derivatives-s1x.c.

◆ vzprm

const double vzprm = -(ny*xiUSCORExprm) + nx*xiUSCOREyprm

Definition at line 20 of file exact_derivatives-s1x.c.

◆ w2prm

const double w2prm = a2prm

Definition at line 21 of file exact_derivatives-s1x.c.

◆ rho2prm

const double rho2prm = costheta*(costheta*a2prm + 2*a2*costhetaprm)

Definition at line 22 of file exact_derivatives-s1x.c.

◆ bulkprm

const double bulkprm = u2*a2prm

Definition at line 23 of file exact_derivatives-s1x.c.

◆ logargprm

const double logargprm = u2*coeffsk2prm + u3*coeffsk3prm + u4*coeffsk4prm + u5*coeffsk5prm

Definition at line 24 of file exact_derivatives-s1x.c.

◆ onepluslogargprm

const double onepluslogargprm = logargprm

Definition at line 25 of file exact_derivatives-s1x.c.

◆ invonepluslogargprm

const double invonepluslogargprm = (-onepluslogargprm)/((onepluslogarg)*(onepluslogarg))

Definition at line 26 of file exact_derivatives-s1x.c.

◆ logTermsprm

const double logTermsprm = (eta*onepluslogargprm)/onepluslogarg

Definition at line 27 of file exact_derivatives-s1x.c.

◆ deltaUprm

const double deltaUprm = logTerms*bulkprm + bulk*logTermsprm

Definition at line 28 of file exact_derivatives-s1x.c.

◆ deltaTprm

const double deltaTprm = r2*deltaUprm

Definition at line 29 of file exact_derivatives-s1x.c.

◆ deltaUUSCOREupt7prm

const double deltaUUSCOREupt7prm = coeffsk5prm

Definition at line 30 of file exact_derivatives-s1x.c.

◆ deltaUUSCOREupt6prm

const double deltaUUSCOREupt6prm = 4.*coeffsk4prm + 5.*u*deltaUUSCOREupt7prm

Definition at line 31 of file exact_derivatives-s1x.c.

◆ deltaUUSCOREupt5prm

const double deltaUUSCOREupt5prm = 3.*coeffsk3prm + u*deltaUUSCOREupt6prm

Definition at line 32 of file exact_derivatives-s1x.c.

◆ deltaUUSCOREupt4prm

const double deltaUUSCOREupt4prm = 2.*coeffsk2prm + u*deltaUUSCOREupt5prm

Definition at line 33 of file exact_derivatives-s1x.c.

◆ deltaUUSCOREupt3prm

const double deltaUUSCOREupt3prm = u*deltaUUSCOREupt4prm

Definition at line 34 of file exact_derivatives-s1x.c.

◆ deltaUUSCOREupt2prm

const double deltaUUSCOREupt2prm = u*a2prm

Definition at line 35 of file exact_derivatives-s1x.c.

◆ deltaUUSCOREupt1prm

const double deltaUUSCOREupt1prm = eta*(deltaUUSCOREupt3*bulkprm + bulk*deltaUUSCOREupt3prm)

Definition at line 36 of file exact_derivatives-s1x.c.

◆ deltaUUSCOREuprm

◆ deltaTUSCORErprm

const double deltaTUSCORErprm = 2.*r*deltaUprm - deltaUUSCOREuprm

Definition at line 38 of file exact_derivatives-s1x.c.

◆ Lambdaprm

const double Lambdaprm = -(a2*xi2*deltaTprm) + 2*w2*w2prm - deltaT*(xi2*a2prm + a2*xi2prm)

Definition at line 39 of file exact_derivatives-s1x.c.

◆ rho2xi2Lambdaprm

const double rho2xi2Lambdaprm = Lambda*xi2*rho2prm + rho2*(xi2*Lambdaprm + Lambda*xi2prm)

Definition at line 40 of file exact_derivatives-s1x.c.

◆ invrho2xi2Lambdaprm

const double invrho2xi2Lambdaprm = (-rho2xi2Lambdaprm)/((rho2xi2Lambda)*(rho2xi2Lambda))

Definition at line 41 of file exact_derivatives-s1x.c.

◆ invrho2prm

Definition at line 42 of file exact_derivatives-s1x.c.

◆ invxi2prm

◆ invLambdaprm

Definition at line 44 of file exact_derivatives-s1x.c.

◆ invLambdasqprm

const double invLambdasqprm = 2*invLambda*invLambdaprm

Definition at line 45 of file exact_derivatives-s1x.c.

◆ rho2invLambdaprm

const double rho2invLambdaprm = rho2*invLambdaprm + invLambda*rho2prm

Definition at line 46 of file exact_derivatives-s1x.c.

◆ expnuprm

Definition at line 47 of file exact_derivatives-s1x.c.

◆ expMUprm

const double expMUprm = rho2prm/(2.*Sqrt(rho2))

Definition at line 48 of file exact_derivatives-s1x.c.

◆ expMUexpnuprm

const double expMUexpnuprm = expnu*expMUprm + expMU*expnuprm

Definition at line 49 of file exact_derivatives-s1x.c.

◆ expMUsqprm

const double expMUsqprm = 2*expMU*expMUprm

Definition at line 50 of file exact_derivatives-s1x.c.

◆ expnusqprm

const double expnusqprm = 2*expnu*expnuprm

Definition at line 51 of file exact_derivatives-s1x.c.

◆ expMUsqexpnusqprm

const double expMUsqexpnusqprm = expnusq*expMUsqprm + expMUsq*expnusqprm

Definition at line 52 of file exact_derivatives-s1x.c.

◆ invexpnuexpMUprm

const double invexpnuexpMUprm = (-expMUexpnuprm)/((expMUexpnu)*(expMUexpnu))

Definition at line 53 of file exact_derivatives-s1x.c.

◆ invexpMUprm

const double invexpMUprm = invexpnuexpMU*expnuprm + expnu*invexpnuexpMUprm

Definition at line 54 of file exact_derivatives-s1x.c.

◆ invexpMUsqprm

const double invexpMUsqprm = 2*invexpMU*invexpMUprm

Definition at line 55 of file exact_derivatives-s1x.c.

◆ expnuinvexpMU2prm

const double expnuinvexpMU2prm = invexpMUsq*expnuprm + expnu*invexpMUsqprm

Definition at line 56 of file exact_derivatives-s1x.c.

◆ invexpMUcubinvexpnuprm

const double invexpMUcubinvexpnuprm = invexpnuexpMU*invexpMUsqprm + invexpMUsq*invexpnuexpMUprm

Definition at line 57 of file exact_derivatives-s1x.c.

◆ deltaRprm

const double deltaRprm = DD*deltaTprm

Definition at line 58 of file exact_derivatives-s1x.c.

◆ wwprm

const double wwprm = (2.*r + coeffs->bb3*eta*u + coeffs->b3*eta*u*a2)*aprm + coeffs->b3*eta*u*a*a2prm

Definition at line 59 of file exact_derivatives-s1x.c.

◆ Bprm

const double Bprm = deltaTprm/(2.*Sqrt(deltaT))

Definition at line 60 of file exact_derivatives-s1x.c.

◆ sqrtdeltaTprm

const double sqrtdeltaTprm = Bprm

Definition at line 61 of file exact_derivatives-s1x.c.

◆ sqrtdeltaRprm

const double sqrtdeltaRprm = deltaRprm/(2.*Sqrt(deltaR))

Definition at line 62 of file exact_derivatives-s1x.c.

◆ deltaTsqrtdeltaRprm

const double deltaTsqrtdeltaRprm = sqrtdeltaR*deltaTprm + deltaT*sqrtdeltaRprm

Definition at line 63 of file exact_derivatives-s1x.c.

◆ sqrtdeltaTdeltaTsqrtdeltaRprm

const double sqrtdeltaTdeltaTsqrtdeltaRprm = sqrtdeltaT*deltaTsqrtdeltaRprm + deltaTsqrtdeltaR*sqrtdeltaTprm

Definition at line 64 of file exact_derivatives-s1x.c.

◆ invdeltaTsqrtdeltaTsqrtdeltaRprm

const double invdeltaTsqrtdeltaTsqrtdeltaRprm = (-sqrtdeltaTdeltaTsqrtdeltaRprm)/((sqrtdeltaTdeltaTsqrtdeltaR)*(sqrtdeltaTdeltaTsqrtdeltaR))

Definition at line 65 of file exact_derivatives-s1x.c.

◆ invdeltaTprm

◆ invsqrtdeltaTprm

◆ invsqrtdeltaRprm

◆ wprm

const double wprm = ww*invLambdaprm + invLambda*wwprm

Definition at line 69 of file exact_derivatives-s1x.c.

◆ LambdaUSCORErprm

const double LambdaUSCORErprm = -(a2*xi2*deltaTUSCORErprm) + 4.*r*w2prm - deltaTUSCOREr*(xi2*a2prm + a2*xi2prm)

Definition at line 70 of file exact_derivatives-s1x.c.

◆ wwUSCORErprm

const double wwUSCORErprm = -(-2. + coeffs->bb3*eta*u2 + coeffs->b3*eta*u2*a2)*aprm - coeffs->b3*eta*u2*a*a2prm

Definition at line 71 of file exact_derivatives-s1x.c.

◆ BRprm

◆ wrprm

◆ nurpt2prm

const double nurpt2prm = ((w2)*(w2))*deltaTUSCORErprm - 4.*r*deltaT*w2prm + w2*(-4.*r*deltaTprm + 2*deltaTUSCOREr*w2prm)

Definition at line 74 of file exact_derivatives-s1x.c.

◆ nurpt1prm

const double nurpt1prm = nurpt2*invdeltaTprm + invdeltaT*nurpt2prm

Definition at line 75 of file exact_derivatives-s1x.c.

◆ nurprm

const double nurprm = 0.5*nurpt1*invLambdaprm + r*invrho2prm + 0.5*invLambda*nurpt1prm

Definition at line 76 of file exact_derivatives-s1x.c.

◆ murprm

const double murprm = r*invrho2prm - invsqrtdeltaRprm

Definition at line 77 of file exact_derivatives-s1x.c.

◆ a2costhetaprm

const double a2costhetaprm = costheta*a2prm + a2*costhetaprm

Definition at line 78 of file exact_derivatives-s1x.c.

◆ wcospt2prm

const double wcospt2prm = ww*deltaTprm + deltaT*wwprm

Definition at line 79 of file exact_derivatives-s1x.c.

◆ wcospt1prm

const double wcospt1prm = wcospt2*invLambdasqprm + invLambdasq*wcospt2prm

Definition at line 80 of file exact_derivatives-s1x.c.

◆ wcosprm

const double wcosprm = -2.*wcospt1*a2costhetaprm - 2.*a2costheta*wcospt1prm

Definition at line 81 of file exact_derivatives-s1x.c.

◆ nucospt3prm

const double nucospt3prm = invrho2*invLambdaprm + invLambda*invrho2prm

Definition at line 82 of file exact_derivatives-s1x.c.

◆ nucospt2prm

const double nucospt2prm = w2*nucospt3prm + nucospt3*w2prm

Definition at line 83 of file exact_derivatives-s1x.c.

◆ nucospt1prm

const double nucospt1prm = nucospt2*a2costhetaprm + a2costheta*nucospt2prm

Definition at line 84 of file exact_derivatives-s1x.c.

◆ nucosprm

const double nucosprm = (-deltaT + w2)*nucospt1prm + nucospt1*(-deltaTprm + w2prm)

Definition at line 85 of file exact_derivatives-s1x.c.

◆ mucosprm

const double mucosprm = invrho2*a2costhetaprm + a2costheta*invrho2prm

Definition at line 86 of file exact_derivatives-s1x.c.

◆ csiprm

const double csiprm = (deltaR*w2*deltaTprm + deltaT*(w2*deltaRprm - 2*deltaR*w2prm))/(2.*Sqrt(deltaR*deltaT)*((w2)*(w2)))

Definition at line 87 of file exact_derivatives-s1x.c.

◆ csi1prm

const double csi1prm = (1.-fabs(1.-tortoise)) * (csiprm)

Definition at line 88 of file exact_derivatives-s1x.c.

◆ csi2prm

const double csi2prm = (0.5-copysign(0.5, 1.5-tortoise)) * (csiprm)

Definition at line 89 of file exact_derivatives-s1x.c.

◆ prTprm

const double prTprm = (nx*p->data[0] + ny*p->data[1] + nz*p->data[2])*csi2prm

Definition at line 90 of file exact_derivatives-s1x.c.

◆ prTtimesoneminuscsi1invprm

const double prTtimesoneminuscsi1invprm = (prT*csi1prm)/((csi1)*(csi1)) + (1. - 1./csi1)*prTprm

Definition at line 91 of file exact_derivatives-s1x.c.

◆ tmpP0prm

const double tmpP0prm = -(nx*prTtimesoneminuscsi1invprm)

Definition at line 92 of file exact_derivatives-s1x.c.

◆ tmpP1prm

const double tmpP1prm = -(ny*prTtimesoneminuscsi1invprm)

Definition at line 93 of file exact_derivatives-s1x.c.

◆ tmpP2prm

const double tmpP2prm = -(nz*prTtimesoneminuscsi1invprm)

Definition at line 94 of file exact_derivatives-s1x.c.

◆ pxirprm

◆ pvrprm

const double pvrprm = r*(vx*tmpP0prm + vy*tmpP1prm + vz*tmpP2prm + tmpP0*vxprm + tmpP1*vyprm + tmpP2*vzprm)

Definition at line 96 of file exact_derivatives-s1x.c.

◆ pvrsqprm

const double pvrsqprm = 2*pvr*pvrprm

Definition at line 97 of file exact_derivatives-s1x.c.

◆ pnprm

const double pnprm = nx*tmpP0prm + ny*tmpP1prm + nz*tmpP2prm

Definition at line 98 of file exact_derivatives-s1x.c.

◆ pnsqprm

const double pnsqprm = 2*pn*pnprm

Definition at line 99 of file exact_derivatives-s1x.c.

◆ prprm

const double prprm = pnprm

Definition at line 100 of file exact_derivatives-s1x.c.

◆ prsqprm

const double prsqprm = 2*pr*prprm

Definition at line 101 of file exact_derivatives-s1x.c.

◆ pfprm

const double pfprm = pxirprm

Definition at line 102 of file exact_derivatives-s1x.c.

◆ pxirsqprm

const double pxirsqprm = 2*pxir*pxirprm

Definition at line 103 of file exact_derivatives-s1x.c.

◆ ptheta2prm

const double ptheta2prm = pvrsq*invxi2prm + invxi2*pvrsqprm

Definition at line 104 of file exact_derivatives-s1x.c.

◆ prT4prm

const double prT4prm = 4*((prT)*(prT)*(prT))*prTprm

Definition at line 105 of file exact_derivatives-s1x.c.

◆ Hnspt7prm

const double Hnspt7prm = invrho2*deltaRprm + deltaR*invrho2prm

Definition at line 106 of file exact_derivatives-s1x.c.

◆ Hnspt6prm

const double Hnspt6prm = rho2invLambda*invxi2prm + invxi2*rho2invLambdaprm

Definition at line 107 of file exact_derivatives-s1x.c.

◆ Hnspt4prm

Definition at line 108 of file exact_derivatives-s1x.c.

◆ Hnspt3prm

const double Hnspt3prm = Hnspt4*deltaTprm + deltaT*Hnspt4prm

Definition at line 109 of file exact_derivatives-s1x.c.

◆ Hnspt2prm

const double Hnspt2prm = rho2*Hnspt3prm + Hnspt3*rho2prm

Definition at line 110 of file exact_derivatives-s1x.c.

◆ Hnspt1prm

const double Hnspt1prm = ww*pfprm + pf*wwprm

Definition at line 111 of file exact_derivatives-s1x.c.

◆ Hnsprm

Definition at line 112 of file exact_derivatives-s1x.c.

◆ Qpt3prm

const double Qpt3prm = invrho2*deltaRprm + deltaR*invrho2prm

Definition at line 113 of file exact_derivatives-s1x.c.

◆ Qpt2prm

const double Qpt2prm = rho2invLambda*invxi2prm + invxi2*rho2invLambdaprm

Definition at line 114 of file exact_derivatives-s1x.c.

◆ Qpt1prm

const double Qpt1prm = invxi2*invrho2prm + invrho2*invxi2prm

Definition at line 115 of file exact_derivatives-s1x.c.

◆ Qprm

Definition at line 116 of file exact_derivatives-s1x.c.

◆ pn2prm

const double pn2prm = deltaR*prsq*invrho2prm + invrho2*(prsq*deltaRprm + deltaR*prsqprm)

Definition at line 117 of file exact_derivatives-s1x.c.

◆ ppprm

const double ppprm = Qprm

Definition at line 118 of file exact_derivatives-s1x.c.

◆ sKerrmultfactprm

const double sKerrmultfactprm = -36.*r*pn2prm + 3.*r*ppprm

Definition at line 119 of file exact_derivatives-s1x.c.

◆ sStarmultfactprm

const double sStarmultfactprm = r*(-30.*pn2prm + 4.*ppprm)

Definition at line 120 of file exact_derivatives-s1x.c.

◆ deltaSigmaStarUSCOREx1prm

◆ deltaSigmaStarUSCOREy1prm

const double deltaSigmaStarUSCOREy1prm = etaover12r*(sKerrUSCOREy*sKerrmultfactprm + sStarUSCOREy*sStarmultfactprm)

Definition at line 122 of file exact_derivatives-s1x.c.

◆ deltaSigmaStarUSCOREz1prm

const double deltaSigmaStarUSCOREz1prm = etaover12r*(sKerrUSCOREz*sKerrmultfactprm + sStarUSCOREz*sStarmultfactprm)

Definition at line 123 of file exact_derivatives-s1x.c.

◆ pn2ppprm

const double pn2ppprm = pp*pn2prm + pn2*ppprm

Definition at line 124 of file exact_derivatives-s1x.c.

◆ pp2prm

const double pp2prm = 2*pp*ppprm

Definition at line 125 of file exact_derivatives-s1x.c.

◆ pn2u2prm

const double pn2u2prm = u2*pn2prm

Definition at line 126 of file exact_derivatives-s1x.c.

◆ ppu2prm

const double ppu2prm = u2*ppprm

Definition at line 127 of file exact_derivatives-s1x.c.

◆ pn2ppu2prm

const double pn2ppu2prm = u2*pn2ppprm

Definition at line 128 of file exact_derivatives-s1x.c.

◆ sMultiplier1pt6prm

const double sMultiplier1pt6prm = -720.*pn2*pn2prm + 126.*pn2ppprm + 3.*pp2prm

Definition at line 129 of file exact_derivatives-s1x.c.

◆ sMultiplier1pt5prm

const double sMultiplier1pt5prm = -96.*pn2ppprm + 23.*pp2prm

Definition at line 130 of file exact_derivatives-s1x.c.

◆ sMultiplier1pt4prm

const double sMultiplier1pt4prm = 324.*pn2prm - 120.*ppprm + r*sMultiplier1pt6prm

Definition at line 131 of file exact_derivatives-s1x.c.

◆ sMultiplier1pt3prm

const double sMultiplier1pt3prm = -282.*pn2prm + 206.*ppprm + r*sMultiplier1pt5prm

Definition at line 132 of file exact_derivatives-s1x.c.

◆ sMultiplier1pt2prm

const double sMultiplier1pt2prm = r*sMultiplier1pt4prm

Definition at line 133 of file exact_derivatives-s1x.c.

◆ sMultiplier1pt1prm

const double sMultiplier1pt1prm = eta*sMultiplier1pt2prm + r*sMultiplier1pt3prm

Definition at line 134 of file exact_derivatives-s1x.c.

◆ sMultiplier1prm

const double sMultiplier1prm = -0.013888888888888888*eta*u2*sMultiplier1pt1prm

Definition at line 135 of file exact_derivatives-s1x.c.

◆ sMultiplier2pt6prm

const double sMultiplier2pt6prm = 5.625*pn2u2*pn2prm - 1.625*pn2ppu2prm + 5.625*pn2*pn2u2prm

Definition at line 136 of file exact_derivatives-s1x.c.

◆ sMultiplier2pt5prm

const double sMultiplier2pt5prm = 0.25*pn2ppu2prm - 0.3125*u2*pp2prm

Definition at line 137 of file exact_derivatives-s1x.c.

◆ sMultiplier2pt4prm

const double sMultiplier2pt4prm = -6.125*pn2u2prm + 1.4166666666666665*ppu2prm + r*sMultiplier2pt6prm

Definition at line 138 of file exact_derivatives-s1x.c.

◆ sMultiplier2pt3prm

const double sMultiplier2pt3prm = -0.6666666666666666*pn2u2prm - 3.0277777777777777*ppu2prm + r*sMultiplier2pt5prm

Definition at line 139 of file exact_derivatives-s1x.c.

◆ sMultiplier2pt2prm

const double sMultiplier2pt2prm = r*sMultiplier2pt4prm

Definition at line 140 of file exact_derivatives-s1x.c.

◆ sMultiplier2pt1prm

const double sMultiplier2pt1prm = eta*sMultiplier2pt2prm + r*sMultiplier2pt3prm

Definition at line 141 of file exact_derivatives-s1x.c.

◆ sMultiplier2prm

const double sMultiplier2prm = eta*sMultiplier2pt1prm

Definition at line 142 of file exact_derivatives-s1x.c.

◆ deltaSigmaStarUSCOREx2prm

const double deltaSigmaStarUSCOREx2prm = deltaSigmaStarUSCOREx1prm + sMultiplier2*sigmaKerrdata0prm + sMultiplier1*sigmaStardata0prm + sigmaStar->data[0]*sMultiplier1prm + sigmaKerr->data[0]*sMultiplier2prm

Definition at line 143 of file exact_derivatives-s1x.c.

◆ deltaSigmaStarUSCOREy2prm

const double deltaSigmaStarUSCOREy2prm = deltaSigmaStarUSCOREy1prm + sigmaStar->data[1]*sMultiplier1prm + sigmaKerr->data[1]*sMultiplier2prm

Definition at line 144 of file exact_derivatives-s1x.c.

◆ deltaSigmaStarUSCOREz2prm

const double deltaSigmaStarUSCOREz2prm = deltaSigmaStarUSCOREz1prm + sigmaStar->data[2]*sMultiplier1prm + sigmaKerr->data[2]*sMultiplier2prm

Definition at line 145 of file exact_derivatives-s1x.c.

◆ deltaSigmaStarUSCOREx3prm

const double deltaSigmaStarUSCOREx3prm = deltaSigmaStarUSCOREx2prm + coeffs->d1*etau3*sigmaStardata0prm

Definition at line 146 of file exact_derivatives-s1x.c.

◆ deltaSigmaStarUSCOREy3prm

const double deltaSigmaStarUSCOREy3prm = deltaSigmaStarUSCOREy2prm

Definition at line 147 of file exact_derivatives-s1x.c.

◆ deltaSigmaStarUSCOREz3prm

const double deltaSigmaStarUSCOREz3prm = deltaSigmaStarUSCOREz2prm

Definition at line 148 of file exact_derivatives-s1x.c.

◆ deltaSigmaStarUSCORExprm

const double deltaSigmaStarUSCORExprm = deltaSigmaStarUSCOREx3prm + coeffs->d1v2*etau3*sigmaKerrdata0prm

Definition at line 149 of file exact_derivatives-s1x.c.

◆ deltaSigmaStarUSCOREyprm

const double deltaSigmaStarUSCOREyprm = deltaSigmaStarUSCOREy3prm

Definition at line 150 of file exact_derivatives-s1x.c.

◆ deltaSigmaStarUSCOREzprm

const double deltaSigmaStarUSCOREzprm = deltaSigmaStarUSCOREz3prm

Definition at line 151 of file exact_derivatives-s1x.c.

◆ sxprm

const double sxprm = deltaSigmaStarUSCORExprm + sStarUSCORExprm

Definition at line 152 of file exact_derivatives-s1x.c.

◆ syprm

const double syprm = deltaSigmaStarUSCOREyprm

Definition at line 153 of file exact_derivatives-s1x.c.

◆ szprm

const double szprm = deltaSigmaStarUSCOREzprm

Definition at line 154 of file exact_derivatives-s1x.c.

◆ sxiprm

Definition at line 155 of file exact_derivatives-s1x.c.

◆ svprm

const double svprm = vx*sxprm + vy*syprm + vz*szprm + sx*vxprm + sy*vyprm + sz*vzprm

Definition at line 156 of file exact_derivatives-s1x.c.

◆ snprm

const double snprm = nx*sxprm + ny*syprm + nz*szprm

Definition at line 157 of file exact_derivatives-s1x.c.

◆ s3prm

const double s3prm = sx*e3USCORExprm + sy*e3USCOREyprm + sz*e3USCOREzprm + e3USCOREx*sxprm + e3USCOREy*syprm + e3USCOREz*szprm

Definition at line 158 of file exact_derivatives-s1x.c.

◆ sqrtQprm

const double sqrtQprm = Qprm/(2.*Sqrt(Q))

Definition at line 159 of file exact_derivatives-s1x.c.

◆ oneplus2sqrtQprm

const double oneplus2sqrtQprm = 2.*sqrtQprm

Definition at line 160 of file exact_derivatives-s1x.c.

◆ oneplus1sqrtQprm

const double oneplus1sqrtQprm = oneplus2sqrtQprm - sqrtQprm

Definition at line 161 of file exact_derivatives-s1x.c.

◆ twoB1psqrtQsqrtQprm

const double twoB1psqrtQsqrtQprm = 2.*B*sqrtQ*oneplus1sqrtQprm + oneplus1sqrtQ*(2.*sqrtQ*Bprm + 2.*B*sqrtQprm)

Definition at line 162 of file exact_derivatives-s1x.c.

◆ invtwoB1psqrtQsqrtQprm

const double invtwoB1psqrtQsqrtQprm = (-twoB1psqrtQsqrtQprm)/((twoB1psqrtQsqrtQ)*(twoB1psqrtQsqrtQ))

Definition at line 163 of file exact_derivatives-s1x.c.

◆ expMUsqsqrtQplusQprm

const double expMUsqsqrtQplusQprm = (Q + sqrtQ)*expMUsqprm + expMUsq*(Qprm + sqrtQprm)

Definition at line 164 of file exact_derivatives-s1x.c.

◆ Hwrpt4aprm

const double Hwrpt4aprm = sv*pxirsqprm + pxirsq*svprm

Definition at line 165 of file exact_derivatives-s1x.c.

◆ Hwrpt4prm

const double Hwrpt4prm = Hwrpt4a*expMUsqexpnusqprm + expMUsqexpnusq*Hwrpt4aprm

Definition at line 166 of file exact_derivatives-s1x.c.

◆ Hwrpt3cprm

const double Hwrpt3cprm = sxi*pxirprm + pxir*sxiprm

Definition at line 167 of file exact_derivatives-s1x.c.

◆ Hwrpt3bprm

const double Hwrpt3bprm = pvr*Hwrpt3cprm + Hwrpt3c*pvrprm

Definition at line 168 of file exact_derivatives-s1x.c.

◆ Hwrpt3aprm

const double Hwrpt3aprm = Hwrpt3b*expMUexpnuprm + expMUexpnu*Hwrpt3bprm

Definition at line 169 of file exact_derivatives-s1x.c.

◆ Hwrpt3prm

const double Hwrpt3prm = Hwrpt3a*Bprm + B*Hwrpt3aprm

Definition at line 170 of file exact_derivatives-s1x.c.

◆ Hwrpt2gprm

const double Hwrpt2gprm = sv*deltaRprm + deltaR*svprm

Definition at line 171 of file exact_derivatives-s1x.c.

◆ Hwrpt2fprm

const double Hwrpt2fprm = sqrtdeltaR*snprm + sn*sqrtdeltaRprm

Definition at line 172 of file exact_derivatives-s1x.c.

◆ Hwrpt2eprm

const double Hwrpt2eprm = pvr*Hwrpt2fprm + Hwrpt2f*pvrprm

Definition at line 173 of file exact_derivatives-s1x.c.

◆ Hwrpt2dprm

const double Hwrpt2dprm = pnsq*Hwrpt2gprm + Hwrpt2g*pnsqprm

Definition at line 174 of file exact_derivatives-s1x.c.

◆ Hwrpt2cprm

const double Hwrpt2cprm = pn*Hwrpt2eprm + Hwrpt2e*pnprm

Definition at line 175 of file exact_derivatives-s1x.c.

◆ Hwrpt2bprm

const double Hwrpt2bprm = sv*expMUsqsqrtQplusQprm + expMUsqsqrtQplusQ*svprm

Definition at line 176 of file exact_derivatives-s1x.c.

◆ Hwrpt2aprm

const double Hwrpt2aprm = xi2*(Hwrpt2bprm + Hwrpt2cprm - Hwrpt2dprm) + (Hwrpt2b + Hwrpt2c - Hwrpt2d)*xi2prm

Definition at line 177 of file exact_derivatives-s1x.c.

◆ Hwrpt2prm

const double Hwrpt2prm = Hwrpt2a*deltaTprm + deltaT*Hwrpt2aprm

Definition at line 178 of file exact_derivatives-s1x.c.

◆ Hwrpt1bprm

Definition at line 179 of file exact_derivatives-s1x.c.

◆ Hwrpt1aprm

const double Hwrpt1aprm = sqrtdeltaR*Hwrpt1bprm + Hwrpt1b*sqrtdeltaRprm

Definition at line 180 of file exact_derivatives-s1x.c.

◆ Hwrpt1prm

Definition at line 181 of file exact_derivatives-s1x.c.

◆ Hwrprm

const double Hwrprm = (Hwrpt2 - Hwrpt3 + Hwrpt4)*Hwrpt1prm + Hwrpt1*(Hwrpt2prm - Hwrpt3prm + Hwrpt4prm)

Definition at line 182 of file exact_derivatives-s1x.c.

◆ Hwcospt9prm

const double Hwcospt9prm = sxi*pxirprm + pxir*sxiprm

Definition at line 183 of file exact_derivatives-s1x.c.

◆ Hwcospt8prm

const double Hwcospt8prm = sv*pvrprm + pvr*svprm

Definition at line 184 of file exact_derivatives-s1x.c.

◆ Hwcospt7prm

Definition at line 185 of file exact_derivatives-s1x.c.

◆ Hwcospt6prm

const double Hwcospt6prm = sqrtdeltaR*Hwcospt7prm + Hwcospt7*sqrtdeltaRprm

Definition at line 186 of file exact_derivatives-s1x.c.

◆ Hwcospt5prm

const double Hwcospt5prm = -(xi2*expMUsqsqrtQplusQprm) + pvrsqprm - expMUsqsqrtQplusQ*xi2prm

Definition at line 187 of file exact_derivatives-s1x.c.

◆ Hwcospt4prm

const double Hwcospt4prm = pn*Hwcospt6prm + Hwcospt6*pnprm

Definition at line 188 of file exact_derivatives-s1x.c.

◆ Hwcospt3prm

Definition at line 189 of file exact_derivatives-s1x.c.

◆ Hwcospt2prm

const double Hwcospt2prm = -(Hwcospt4*Bprm) + sn*Hwcospt3prm - B*Hwcospt4prm + Hwcospt3*snprm

Definition at line 190 of file exact_derivatives-s1x.c.

◆ Hwcospt1prm

Definition at line 191 of file exact_derivatives-s1x.c.

◆ Hwcosprm

Definition at line 192 of file exact_derivatives-s1x.c.

◆ deltaTsqrtQprm

const double deltaTsqrtQprm = sqrtQ*deltaTprm + deltaT*sqrtQprm

Definition at line 193 of file exact_derivatives-s1x.c.

◆ invdeltatTsqrtQprm

const double invdeltatTsqrtQprm = (-deltaTsqrtQprm)/((deltaTsqrtQ)*(deltaTsqrtQ))

Definition at line 194 of file exact_derivatives-s1x.c.

◆ HSOLpt5prm

const double HSOLpt5prm = pxir*(-Bprm + expMUexpnuprm) + (-B + expMUexpnu)*pxirprm

Definition at line 195 of file exact_derivatives-s1x.c.

◆ HSOLpt4prm

const double HSOLpt4prm = invexpMU*HSOLpt5prm + HSOLpt5*invexpMUprm

Definition at line 196 of file exact_derivatives-s1x.c.

◆ HSOLpt3prm

const double HSOLpt3prm = HSOLpt4*expnusqprm + expnusq*HSOLpt4prm

Definition at line 197 of file exact_derivatives-s1x.c.

◆ HSOLpt2prm

const double HSOLpt2prm = s3*HSOLpt3prm + HSOLpt3*s3prm

Definition at line 198 of file exact_derivatives-s1x.c.

◆ HSOLpt1prm

const double HSOLpt1prm = invxi2*HSOLpt2prm + HSOLpt2*invxi2prm

Definition at line 199 of file exact_derivatives-s1x.c.

◆ HSOLprm

Definition at line 200 of file exact_derivatives-s1x.c.

◆ deltaTsqrtQplusQprm

const double deltaTsqrtQplusQprm = (Q + sqrtQ)*deltaTprm + deltaT*(Qprm + sqrtQprm)

Definition at line 201 of file exact_derivatives-s1x.c.

◆ invdeltaTsqrtQplusQprm

const double invdeltaTsqrtQplusQprm = (-deltaTsqrtQplusQprm)/((deltaTsqrtQplusQ)*(deltaTsqrtQplusQ))

Definition at line 202 of file exact_derivatives-s1x.c.

◆ HSONLmult2prm

Definition at line 203 of file exact_derivatives-s1x.c.

◆ HSONLmultprm

Definition at line 204 of file exact_derivatives-s1x.c.

◆ HSONLpt1bprm

const double HSONLpt1bprm = xi2*pnprm + pn*xi2prm

Definition at line 205 of file exact_derivatives-s1x.c.

◆ HSONLpt1aprm

const double HSONLpt1aprm = (-mucos + nucos)*HSONLpt1bprm + pvr*murprm + HSONLpt1b*(-mucosprm + nucosprm) - pvr*nurprm + mur*pvrprm - nur*pvrprm

Definition at line 206 of file exact_derivatives-s1x.c.

◆ HSONLpt1prm

Definition at line 207 of file exact_derivatives-s1x.c.

◆ HSONLpt2dprm

const double HSONLpt2dprm = pxir*nurprm + nur*pxirprm

Definition at line 208 of file exact_derivatives-s1x.c.

◆ HSONLpt2cprm

const double HSONLpt2cprm = oneplus2sqrtQ*HSONLpt2dprm + HSONLpt2d*oneplus2sqrtQprm

Definition at line 209 of file exact_derivatives-s1x.c.

◆ HSONLpt2bprm

const double HSONLpt2bprm = sxi*Bprm + B*sxiprm

Definition at line 210 of file exact_derivatives-s1x.c.

◆ HSONLpt2aprm

const double HSONLpt2aprm = HSONLpt2c*expMUexpnuprm + expMUexpnu*HSONLpt2cprm

Definition at line 211 of file exact_derivatives-s1x.c.

◆ HSONLpt2prm

Definition at line 212 of file exact_derivatives-s1x.c.

◆ HSONLpt3cprm

const double HSONLpt3cprm = sv*pxirprm + pxir*svprm

Definition at line 213 of file exact_derivatives-s1x.c.

◆ HSONLpt3bprm

const double HSONLpt3bprm = oneplus1sqrtQ*HSONLpt3cprm + HSONLpt3c*oneplus1sqrtQprm

Definition at line 214 of file exact_derivatives-s1x.c.

◆ HSONLpt3aprm

const double HSONLpt3aprm = HSONLpt3b*expMUexpnuprm + expMUexpnu*HSONLpt3bprm

Definition at line 215 of file exact_derivatives-s1x.c.

◆ HSONLpt3prm

const double HSONLpt3prm = HSONLpt2*Bprm - HSONLpt3a*BRprm + B*HSONLpt2prm - BR*HSONLpt3aprm

Definition at line 216 of file exact_derivatives-s1x.c.

◆ HSONLpt4eprm

const double HSONLpt4eprm = xi2*snprm + sn*xi2prm

Definition at line 217 of file exact_derivatives-s1x.c.

◆ HSONLpt4dprm

const double HSONLpt4dprm = oneplus2sqrtQ*HSONLpt4eprm + HSONLpt4e*oneplus2sqrtQprm

Definition at line 218 of file exact_derivatives-s1x.c.

◆ HSONLpt4cprm

const double HSONLpt4cprm = pxir*HSONLpt4dprm + HSONLpt4d*pxirprm

Definition at line 219 of file exact_derivatives-s1x.c.

◆ HSONLpt4bprm

const double HSONLpt4bprm = nucos*HSONLpt4cprm + HSONLpt4c*nucosprm

Definition at line 220 of file exact_derivatives-s1x.c.

◆ HSONLpt4aprm

const double HSONLpt4aprm = HSONLpt4b*expMUexpnuprm + expMUexpnu*HSONLpt4bprm

Definition at line 221 of file exact_derivatives-s1x.c.

◆ HSONLpt4prm

Definition at line 222 of file exact_derivatives-s1x.c.

◆ HSONLprm

const double HSONLprm = HSONLpt4*HSONLmultprm + HSONLmult*HSONLpt4prm

Definition at line 223 of file exact_derivatives-s1x.c.

◆ Hsprm

const double Hsprm = HSOLprm + HSONLprm + wcos*Hwcosprm + wr*Hwrprm + w*s3prm + s3*wprm + Hwcos*wcosprm + Hwr*wrprm

Definition at line 224 of file exact_derivatives-s1x.c.

◆ Hsspt1prm

const double Hsspt1prm = -0.5*(-6.*sn*snprm + 2*(sx*sxprm + sy*syprm + sz*szprm))

Definition at line 225 of file exact_derivatives-s1x.c.

◆ Hssprm

const double Hssprm = u3*Hsspt1prm

Definition at line 226 of file exact_derivatives-s1x.c.

◆ sKerrdotsStarprm

const double sKerrdotsStarprm = sStarUSCOREx*sKerrUSCORExprm + sKerrUSCOREx*sStarUSCORExprm

Definition at line 227 of file exact_derivatives-s1x.c.

◆ Hpt1prm

const double Hpt1prm = etau4*s1dots1prm

Definition at line 228 of file exact_derivatives-s1x.c.

◆ Hprm

const double Hprm = Hnsprm + (coeffs->dheffSSv2 + coeffs->dheffSS*sKerrdotsStar)*Hpt1prm + Hsprm + Hssprm + coeffs->dheffSS*Hpt1*sKerrdotsStarprm

Definition at line 229 of file exact_derivatives-s1x.c.

◆ Hrealprm

const double Hrealprm = (eta*Hprm)*invHreal

Definition at line 230 of file exact_derivatives-s1x.c.