Offline Localization (bayestar-localize-coincs
)¶
Produce GW sky maps for all coincidences in search pipeline output database in LIGO-LW XML, LIGO-LW SQLite, or PyCBC HDF5 format.
The distance prior is controlled by the --prior-distance-power
argument.
If you set --prior-distance-power
to k, then the distance prior is
proportional to r^k. The default is 2, uniform in volume.
If the --min-distance
argument is omitted, it defaults to zero. If the
--max-distance argument
is omitted, it defaults to the SNR=4 horizon
distance of the most sensitive detector.
A FITS file is created for each sky map, having a filename of the form
X.fits
where X is the integer LIGO-LW row ID of the coinc. The OBJECT
card in the FITS header is also set to the integer row ID.
usage: bayestar-localize-coincs [-h] [--f-low Hz]
[--f-high-truncate F_HIGH_TRUNCATE]
[--waveform WAVEFORM] [--min-distance Mpc]
[--max-distance Mpc]
[--prior-distance-power -1|2] [--cosmology]
[--enable-snr-series]
[--rescale-loglikelihood RESCALE_LOGLIKELIHOOD]
[--mcmc] [--chain-dump] [--seed SEED]
[--version]
[-l CRITICAL|ERROR|WARNING|INFO|DEBUG|NOTSET]
[-d X1 [X1 ...]] [--keep-going]
[--pycbc-sample PYCBC_SAMPLE]
[--coinc-event-id [COINC_EVENT_ID ...]]
[--output OUTPUT] [--condor-submit]
INPUT.{hdf,xml,xml.gz,sqlite}
[INPUT.{hdf,xml,xml.gz,sqlite} ...]
Positional Arguments¶
- INPUT.{hdf,xml,xml.gz,sqlite}
Input LIGO-LW XML file, SQLite file, or PyCBC HDF5 files. For PyCBC, you must supply the coincidence file (e.g. “H1L1-HDFINJFIND.hdf” or “H1L1-STATMAP.hdf”), the template bank file (e.g. H1L1-BANK2HDF.hdf), the single-detector merged PSD files (e.g. “H1-MERGE_PSDS.hdf” and “L1-MERGE_PSDS.hdf”), and the single-detector merged trigger files (e.g. “H1-HDF_TRIGGER_MERGE.hdf” and “L1-HDF_TRIGGER_MERGE.hdf”), in any order.
Default:
-
Named Arguments¶
- --version
show program’s version number and exit
- -l, --loglevel
Default:
INFO
- -d, --disable-detector
disable certain detectors
- --keep-going, -k
Keep processing events if a sky map fails to converge
Default:
False
- --pycbc-sample
(PyCBC only) sample population
Default:
'foreground'
- --coinc-event-id
run on only these specified events
- --output, -o
output directory
Default:
'.'
- --condor-submit
submit to Condor instead of running locally
Default:
False
waveform options¶
Options that affect template waveform generation
- --f-low
Low frequency cutoff
Default:
30
- --f-high-truncate
Truncate waveform at this fraction of the maximum frequency of the PSD
Default:
0.95
- --waveform
Template waveform approximant: e.g., TaylorF2threePointFivePN
Default:
'o2-uberbank'
posterior options¶
Options that affect the BAYESTAR posterior
- --min-distance
Minimum distance of prior in megaparsecs
- --max-distance
Maximum distance of prior in megaparsecs
- --prior-distance-power
Distance prior: -1 for uniform in log, 2 for uniform in volume
Default:
2
- --cosmology
Use cosmological comoving volume prior
Default:
False
- --enable-snr-series, --disable-snr-series
Enable input of SNR time series
Default:
True
- --rescale-loglikelihood
Rescale log likelihood by the square of this factor to account for excess technical noise from search pipeline
Default:
0.83
BAYESTAR MCMC options¶
BAYESTAR options for MCMC sampling
- --mcmc
Use MCMC sampling instead of Gaussian quadrature
Default:
False
- --chain-dump
For MCMC methods, dump the sample chain to disk
Default:
False
random number generator options¶
Options that affect the Numpy pseudo-random number genrator
- --seed
Pseudo-random number generator seed [default: initialized from /dev/urandom or clock]