|
float | lalapps_string_cs_gamma_largeloops.LAMBDA_Z_EQ = 5440.0 |
|
float | lalapps_string_cs_gamma_largeloops.LAMBDA_H_0 = 2.27e-18 |
|
float | lalapps_string_cs_gamma_largeloops.LAMBDA_OMEGA_M = 0.279 |
|
float | lalapps_string_cs_gamma_largeloops.LAMBDA_OMEGA_R = 8.5e-5 |
|
float | lalapps_string_cs_gamma_largeloops.LOOPS_RAD_POWER = 50.0 |
|
float | lalapps_string_cs_gamma_largeloops.CUSPS_PER_LOOP = 1.0 |
|
| lalapps_string_cs_gamma_largeloops.ops |
|
| lalapps_string_cs_gamma_largeloops.files |
|
| lalapps_string_cs_gamma_largeloops.amp |
|
| lalapps_string_cs_gamma_largeloops.eff |
|
| lalapps_string_cs_gamma_largeloops.Deff |
|
| lalapps_string_cs_gamma_largeloops.efficiency_file |
|
| lalapps_string_cs_gamma_largeloops.dtype |
|
| lalapps_string_cs_gamma_largeloops.unpack |
|
| lalapps_string_cs_gamma_largeloops.dlnA = numpy.log(amp[1:]) - numpy.log(amp[:-1]) |
|
| lalapps_string_cs_gamma_largeloops.outfile = open("gamma.dat", 'w') |
|
float | lalapps_string_cs_gamma_largeloops.lnz_min = -50.0 |
|
float | lalapps_string_cs_gamma_largeloops.lnz_max = 50.0 |
|
float | lalapps_string_cs_gamma_largeloops.dlnz = 0.1 |
|
| lalapps_string_cs_gamma_largeloops.z = numpy.logspace(lnz_min, lnz_max, int((lnz_max-lnz_min)/dlnz)+1, base = math.e) |
|
| lalapps_string_cs_gamma_largeloops.dRdA = numpy.zeros(len(amp), dtype = float) |
|
| lalapps_string_cs_gamma_largeloops.P = math.exp(math.log(ops.pstart) + i * (math.log(ops.pend) - math.log(ops.pstart)) / (ops.np - 1)) |
|
| lalapps_string_cs_gamma_largeloops.Gmu = math.exp(math.log(ops.Gmustart) + j * (math.log(ops.Gmuend) - math.log(ops.Gmustart)) / (ops.nGmu - 1)) |
|
| lalapps_string_cs_gamma_largeloops.file |
|
| lalapps_string_cs_gamma_largeloops.dRdzdA = cs_gamma.finddRdzdA(Gmu, ops.frequency, LOOPS_RAD_POWER, amp, z, ops.model) |
|
float | lalapps_string_cs_gamma_largeloops.gammaAverage = scipy.integrate.simps(eff[:-1] * dRdA[:-1] * amp[:-1] * dlnA) * CUSPS_PER_LOOP / P |
|
float | lalapps_string_cs_gamma_largeloops.gammaMin = scipy.integrate.simps(numpy.clip(eff[:-1] - Deff[:-1], 0.0, 1.0) * dRdA[:-1] * amp[:-1] * dlnA) * CUSPS_PER_LOOP / P |
|
float | lalapps_string_cs_gamma_largeloops.gammaMax = scipy.integrate.simps(numpy.clip(eff[:-1] + Deff[:-1], 0.0, 1.0) * dRdA[:-1] * amp[:-1] * dlnA) * CUSPS_PER_LOOP / P |
|