Loading [MathJax]/extensions/TeX/AMSsymbols.js
LALInspiral 5.0.3.1-6c6b863
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
LALInspiralSetup.c
Go to the documentation of this file.
1/*
2* Copyright (C) 2007 David Churches, Drew Keppel, Duncan Brown, Gareth Jones, Jolien Creighton, B.S. Sathyaprakash, Thomas Cokelaer
3*
4* This program is free software; you can redistribute it and/or modify
5* it under the terms of the GNU General Public License as published by
6* the Free Software Foundation; either version 2 of the License, or
7* (at your option) any later version.
8*
9* This program is distributed in the hope that it will be useful,
10* but WITHOUT ANY WARRANTY; without even the implied warranty of
11* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12* GNU General Public License for more details.
13*
14* You should have received a copy of the GNU General Public License
15* along with with program; see the file COPYING. If not, write to the
16* Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17* MA 02110-1301 USA
18*/
19
20/**
21 * \author Sathyaprakash, B. S.
22 * \file
23 * \ingroup LALInspiral_h
24 *
25 * \brief Module to generate all the Taylor and Pade coefficients needed in
26 * waveform generation.
27 *
28 * ### Prototypes ###
29 *
30 * <tt>XLALInspiralSetup()</tt>
31 * <ul>
32 * <li> \c ak: Output containing PN expansion coefficients of various physical
33 * quantities such as energy, flux, frequency, phase and timing.</li>
34 * <li> \c params: Input containing binary chirp parameters.</li>
35 * </ul>
36 *
37 * ### Description ###
38 *
39 * Module to generate all the coefficiants needed in the Taylor and Pade expressions
40 * for the energy and flux functions \f$E^{\prime}(v)\f$ and \f$\mathcal{F}(v)\f$.
41 * These are used to solve the gravitational wave phasing formula.
42 * The coefficients are used by the function \c LALInspiralChooseModel to define
43 * the energy and flux functions by accessing the structure \c ak and are tabulated
44 * in \ref table_energy "this table" and \ref table_flux "this table".
45 *
46 * ### Algorithm ###
47 *
48 * None.
49 *
50 * ### Uses ###
51 *
52 * None.
53 *
54 * ### Notes ###
55 *
56 */
57
58
59
60#include <math.h>
61#include <lal/LALInspiral.h>
62#include <lal/LALStdlib.h>
63#include <lal/LALConstants.h>
64
65/* static void LALPadeCoeffs7(int n, double *padecoeffs, double *taylorcoeffs); */
66
67void
70 expnCoeffs *ak,
72 )
73{
74 XLAL_PRINT_DEPRECATION_WARNING("XLALInspiralSetup");
75
78
80 {
82 }
84 RETURN (status);
85}
86
87int
89 expnCoeffs *ak,
91 )
92{
93 INT4 ieta;
94 /*INT4 pnorder=7;
95 * */
96 REAL8 lso, eta, vpole, vlso;
97 REAL8 a1, a2, a3, a4, a5, a6, a7, a8;
98 REAL8 c1, c2, c3, c4, c5, c6, c7, c8;
99 REAL8 a12, a22, a32, a42, a52, a62, a72, a23, a33, a43, a53, a34, a44;
100 REAL8 oneby6=1.0/6.0;
101 REAL8 beta = 0.L;
102 REAL8 sigma = 0.L;
103 REAL8 chi1, chi2;
104
105 if (ak == NULL)
107 if (params == NULL)
109 if (params->mass1 <= 0)
111 if (params->mass2 <= 0)
113 if (params->fLower <= 0)
115 if (params->fCutoff <= 0)
117 if (params->tSampling <= 0)
119 if (params->tSampling <= 2*params->fCutoff)
121
122 vpole = 0.0;
123 ak->omegaS = params->OmegaS;
124 ak->zeta2 = params->Zeta2;
125 ak->ieta = params->ieta;
126 ak->EulerC = LAL_GAMMA;
127 ak->lambda = -1987./3080.;
128 ak->theta = -11831./9240.;
129 ak->t0 = params->startTime;
130 ak->m1 = params->mass1;
131 ak->m2 = params->mass2;
132 ak->f0 = params->fLower;
133 ak->fn = params->fCutoff;
134 ak->samplingrate = params->tSampling;
135 ak->samplinginterval = 1./ak->samplingrate;
136
137 lso = sqrt(oneby6);
138/*
139 ieta determines the nature of the waveforms:
140 ieta=0 testmass waveforms
141 ieta=1 comparable mass waveforms.
142*/
143 ieta = ak->ieta;
144
145/* Compute the total mass and eta from m1 and m2 */
146 ak->totalmass = (ak->m1 + ak->m2);
147 ak->eta = (ak->m1*ak->m2) / (ak->totalmass*ak->totalmass);
148 eta = ak->eta;
149 ak->totalmass = ak->totalmass * LAL_MTSUN_SI;
150
151
152/* Aligned spin corrections (Poisson and Will PRD 52 848 (1995))
153 Use the z components of the spins */
154 chi1 = params->spin1[2];
155 chi2 = params->spin2[2];
156 if (eta <= 0.25L)
157 {
158 /* Chi1 is spin on larger mass
159 m1 = mtot * (1 + sqrt(1 - 4 eta)) / 2
160 m2 = mtot * (1 - sqrt(1 - 4 eta)) / 2 */
161 beta = ((113.L - 76.L * ieta * eta) * (chi1 + chi2) / 24.L)
162 + (113.L * sqrt(1.L - 4.L * ieta * eta) * (chi1 - chi2) / 24.L);
163 sigma = 474.L * ieta * eta * chi1 * chi2 / 48.L;
164 }
165
166
167/* Set initial velocity according to initial frequency */
168
169 ak->v0 = pow (LAL_PI * ak->totalmass * ak->f0, (1./3.));
170
171/* Taylor coefficients of E(x) */
172 ak->ETaN = -eta/2.;
173 ak->ETa1 = -(9. + ieta*eta)/12.;
174 ak->ETa2 = -(27. - 19*ieta*eta + ieta*eta*eta/3.)/8.;
175 ak->ETa3 = -675./64. + (209323./4032. - 205.*LAL_PI*LAL_PI/96.
176 - 110./9. * ak->lambda)*ieta*eta
177 - 155./96. * ieta*eta*eta - 35./5184. * ieta*eta*eta*eta;
178
179/* Taylor coefficients of e(x) */
180 ak->eTaN = -1.;
181 ak->eTa1 = -1.-ieta*eta/3.;
182 ak->eTa2 = -3.+35.*ieta*eta/12.;
183 ak->eTa3 = -9.+(26189./504. - 205./96.*LAL_PI*LAL_PI -110./9.*ak->lambda)*ieta*eta
184 - 103./36.*ieta*eta*eta + ieta*eta*eta*eta/81.;
185
186/* Taylor coefficients of dE(v)/dv. (NOTE v and NOT x) */
187 ak->dETaN = -eta;
188 ak->dETa1 = 2.*ak->ETa1;
189 ak->dETa2 = 3.*ak->ETa2;
190 ak->dETa3 = 4.*ak->ETa3;
191
192/* Pade coefficients of e(x)-function. */
193 ak->ePaN = -1.;
194 c1 = ak->ePa1 = 1.+ieta*eta/3.;
195 c2 = ak->ePa2 = -(144. - 81.*ieta*eta + 4.*ieta*eta*eta) / (36.+12*ieta*eta);
196 c3 = ak->ePa3 = (ak->eTa1*ak->eTa3 - ak->eTa2*ak->eTa2)
197 / (ak->eTa1*(ak->eTa1*ak->eTa1 - ak->eTa2));
198
199/* Location of the 0PN and 1PN T- and P-approximant last stable orbit: */
200 ak->vlsoT0 = lso;
201 ak->vlsoP0 = lso;
202 ak->vlsoP2 = lso;
203/*
204 vlsoT2 = 6./(9.+ieta*eta);
205 This correct value makes vlso too large for vlsoT2 hence use 1/sqrt(6)
206*/
207 ak->vlsoT2 = lso;
208
209/* vlsoT4 is also too large for certain T-approximants: most notably
210 TaylorT3, TaylorT2(3PN (1.4,10) crashes)
211*/
212 ak->vlsoT4 = pow(-ak->ETa1 + pow(ak->ETa1*ak->ETa1 - 3*ak->ETa2,0.5)/(3*ak->ETa2), 0.5);
213 ak->vlsoP4 = pow((-1.+pow(-ak->ePa1/ak->ePa2,0.5))/(ak->ePa1 + ak->ePa2), 0.5);
214 ak->vpoleP4 = pow(4.*(3.+ieta*eta)/(36.-35.*ieta*eta), 0.5);
215/* THE VALUE NEEDS TO BE CHANGED AFTER THE CALCULATION OF CORRECT LSOs */
216 ak->vlsoT6 = ak->vlsoT4;
217/*
218 vlsoP6 comes from solving a quadratic equation; the plus-root
219 is negative and can't be used; the postive root is:
220*/
221 ak->vlsoP6 = sqrt(0.5/(c2*c2+c3*c3+c2*c1+2.*c2*c3)
222 *(-2.*c3 - 2.*c2 - 2.*sqrt(-c2*c1)));
223/* The 3PN pole doesn't exist for eta=1/4. So decided to use 2PN pole always */
224 ak->vpoleP6 = ak->vpoleP4;
225
226/* For the EOBPP model, vpole and vlso are tuned to NR */
227 ak->vpolePP = 0.85;
228 ak->vlsoPP = 1.0;
229/*
230 a = c1*c3;
231 b = c1+c2+c3;
232 vpole = (-b + sqrt(b*b-4.*a))/(2.*a);
233 fprintf(stderr, "%e %e %e %e %e vpolePlus=%e\n", c1, c2, c3, b*b, 4.*a, vpole);
234 vpole = (-b - sqrt(b*b-4.*a))/(2.*a);
235 fprintf(stderr, "%e %e vpoleMinus=%e\n", ak->vlsoP4, ak->vlsoP6, vpole);
236 ak->vpoleP6 = vpole;
237*/
238
239/* Taylor coefficients of flux. */
240 ak->fTaN = ak->fPaN = ak->FTaN = 32.*eta*eta/5.;
241 ak->FTa1 = 0.;
242 ak->FTa2 = -1247./336.-35.*ieta*eta/12.;
243 ak->FTa3 = 4.*LAL_PI;
244 ak->FTa4 = -44711./9072.+9271.*ieta*eta/504.+65.*ieta*eta*eta/18.;
245 ak->FTa5 = -(8191./672.+583./24.*ieta*eta)*LAL_PI;
246 ak->FTl6 = -1712./105.;
247 ak->FTa6 = 6643739519./69854400. + 16.*LAL_PI*LAL_PI/3. + ak->FTl6 * log (4.L)
248 - 1712./105.*ak->EulerC+ (-134543./7776. + 41.*LAL_PI*LAL_PI/48.) * ieta*eta
249 - 94403./3024. * ieta*eta*eta - 775./324. * ieta * eta*eta*eta;
250 ak->FTa7 = LAL_PI * (-16285./504. + 214745./1728. * ieta*eta
251 + 193385./3024.* ieta*eta*eta);
252 ak->FTa8 = - 117.5043907226773;
253 ak->FTl8 = 52.74308390022676;
254
255/* Initialize members of the structures which get fed into
256 phasing3() and frequency3().
257*/
258
259 ak->ptaN = -2./eta;
260 ak->pta2 = 3715./8064. + 55.*ieta*eta/96.;
261 ak->pta3 = -0.75*LAL_PI;
262 ak->pta4 = 9.275495/14.450688 + 2.84875*ieta*eta/2.58048
263 + 1855.*ieta*eta*eta/2048.;
264 ak->pta5 = -(3.8645/17.2032 - 65./2048.*ieta*eta) * LAL_PI;
265 ak->pta6 = (83.1032450749357/5.7682522275840 - 53./40.*LAL_PI*LAL_PI
266 - 107./56. * ak->EulerC + (-123.292747421/4.161798144
267 + 2.255/2.048 *LAL_PI*LAL_PI + 385./48. * ak->lambda
268 - 55./16.* ak->theta) * ieta * eta + 1.54565/18.35008 * ieta*eta*eta
269 - 1.179625/1.769472 * ieta*eta*eta*eta);
270
271 ak->pta7 = (1.88516689/1.73408256 + 488825./516096. * ieta*eta
272 - 141769./516096. * ieta*eta*eta) * LAL_PI;
273 ak->ptl6 = 107./448.;
274
275 ak->ftaN = 1./(8.*LAL_PI*ak->totalmass);
276 ak->fta2 = 743./2688.+(11.*ieta*eta)/32.;
277 ak->fta3 = -0.3*LAL_PI;
278 ak->fta4 = 1.855099/14.450688 + 5.6975*ieta*eta/25.8048
279 + 3.71*ieta*eta*eta/20.48;
280 ak->fta5 = -(7.729/21.504 - 13./256.*ieta*eta) * LAL_PI;
281 ak->fta6 = (-7.20817631400877/2.88412611379200 + (53./200.) * LAL_PI*LAL_PI
282 + 1.07/2.80 * ak->EulerC + 1.07/2.80 * log(2.)
283 + (1.23292747421/.20808990720 - 4.51/20.48 * LAL_PI*LAL_PI
284 - 77./48. * ak->lambda + 11./16. * ak->theta) * ieta*eta
285 - 3.0913/183.5008 * ieta*eta*eta
286 + 2.35925/17.69472 * ieta*eta*eta*eta);
287
288 ak->fta7 = (-1.88516689/4.33520640 - 97765./258048. * ieta*eta
289 + 141769./1290240. * ieta*eta*eta)*LAL_PI;
290 ak->ftl6 = -107./2240.;
291
292/* Initialize members of the structures which get fed into
293 phasing2() and frequency2().
294*/
295
296 ak->tvaN = -5.*ak->totalmass/(256.*eta);
297 ak->tva2 = (743./252. + 11./3. * ieta * eta);
298 ak->tva3 = -32./5. * LAL_PI;
299 ak->tva4 = 30.58673/5.08032 + 54.29/5.04*ieta*eta + 61.7/7.2*ieta*eta*eta;
300 ak->tva5 = -(77.29/2.52 -13./3.*ieta*eta) * LAL_PI;
301 ak->tva6 = - 1005.2469856691/2.3471078400
302 + (128./3.- 451./12.*ieta*eta) * LAL_PI*LAL_PI
303 + 68.48/1.05*ak->EulerC
304 + 1533.5597827/1.5240960 * ieta*eta
305 - 15.211/1.728*ieta*eta*eta
306 + 25.565/1.296*ieta*eta*eta*eta
307 + 352./3.*ieta*eta*ak->theta
308 - 2464./9.*ieta*eta*ak->lambda;
309 ak->tva7 = (-154.19335/1.27008 - 75703./756.*ieta*eta
310 + 14809./378.*ieta*eta*eta) * LAL_PI;
311 ak->tvl6 = 68.48/1.05;
312
313 ak->pvaN = -1./(16.*eta);
314 ak->pva2 = (3715./1008. + 55./12.*ieta*eta);
315 ak->pva3 = -10.*LAL_PI;
316 ak->pva4 = (15293365./1016064. + 27145./1008.*ieta*eta
317 + 3085./144.*ieta*eta*eta);
318 ak->pva5 = (38645./672. - 65./8. * ieta*eta) * LAL_PI;
319 ak->pva6 = 1234.8611926451/1.8776862720 - 160./3. * LAL_PI*LAL_PI
320 - 1712./21. * ak->EulerC
321 + (-15335597827./12192768. + 2255./48. * LAL_PI*LAL_PI
322 + 3080./9.*ak->lambda - 440./3. * ak->theta) * ieta*eta
323 + 76055./6912. * ieta*eta*eta - 127825./5184. * ieta*eta*eta*eta;
324 ak->pva7 = (77096675./2032128. + 378515./12096.*ieta*eta
325 - 74045./6048.*ieta*eta*eta) * LAL_PI;
326 ak->pvl6 = - 1712./21.;
327
328/*
329 Expansion coefficients for the Fourier domain phase of the usual
330 stationary phase approximation
331*/
332
333 /* pfak equal 8/3* pvak - 5/3*tvak, which can be used to check that the
334 * coefficients that are coded here below are exact e.g.,
335 ak->pfa6 = 8./3. * ak->pva6 - 5./3. * ak->tva6;
336 */
337
338 /* For TaylorT2 and TaylorF2, we used the following references :
339 * PRD72,029901(E)2005 for the 7th order which completes (corrects)
340 * PRD66,027502,2002, where there are typos in Eq 1.1, 1.2, 2.9, 2.10, and
341 * 2.11.. */
342
343 ak->pfaN = 3.L/(128.L * eta);
344 ak->pfa2 = 5.L*(743.L/84.L + 11.L * ieta*eta)/9.L;
345 ak->pfa3 = -16.L*LAL_PI + 4.L*beta;
346 ak->pfa4 = 5.L*(3058.673L/7.056L + 5429.L/7.L * ieta*eta
347 + 617.L * ieta*eta*eta)/72.L - 10.L*sigma;
348 ak->pfa5 = 5.L/9.L * (7729.L/84.L - 13.L * ieta*eta) * LAL_PI;
349 ak->pfl5 = 5.L/3.L * (7729.L/84.L - 13.L * ieta*eta) * LAL_PI;
350
351 ak->pfa6 = (11583.231236531L/4.694215680L - 640.L/3.L * LAL_PI * LAL_PI - 6848.L/21.L*ak->EulerC)
352 + ieta*eta * (-15335.597827L/3.048192L + 2255./12. * LAL_PI * LAL_PI - 1760./3.*ak->theta +12320./9.*ak->lambda)
353 + ieta*eta*eta * 76055.L/1728.L
354 - ieta*eta*eta*eta* 127825.L/1296.L ;
355
356 ak->pfl6 = -6848.L/21.L;
357
358 ak->pfa7 = LAL_PI * 5.L/756.L * ( 15419335.L/336.L + 75703.L/2.L * ieta*eta - 14809.L * ieta*eta*eta);
359
360/*
361 Taylor coefficients of f(v)=(1-v/vpole)F(v)
362*/
363
364 switch (params->order)
365 {
367 case LAL_PNORDER_HALF:
368 case LAL_PNORDER_ONE:
370 case LAL_PNORDER_TWO:
372 vpole = ak->vpoleP4;
373 break;
376 vpole = ak->vpoleP6;
377 break;
379 if ( params->approximant == EOBNRv2 || params->approximant == EOBNRv2HM )
380 {
381 vpole = ak->vpolePP;
382 }
383 else
384 {
385 vpole = ak->vpoleP6;
386 }
387 break;
388 default:
389 XLALPrintError("XLAL Error - %s: Unknown PN order in switch\n", __func__);
391 break;
392 }
393
394 /* We need a different vlso for the PP model */
395 if ( params->approximant == EOBNRv2 || params->approximant == EOBNRv2HM )
396 {
397 vlso = ak->vlsoPP;
398 }
399 else
400 {
401 vlso = ak->vlsoP4;
402 }
403
404 ak->fTa1 = ak->FTa1 - 1./vpole;
405 ak->fTa2 = ak->FTa2 - ak->FTa1/vpole;
406 ak->fTa3 = ak->FTa3 - ak->FTa2/vpole;
407 ak->fTa4 = ak->FTa4 - ak->FTa3/vpole;
408 ak->fTa5 = ak->FTa5 - ak->FTa4/vpole;
409 ak->fTa6 = ak->FTa6 - ak->FTa5/vpole + ak->FTl6*log(vlso);
410 ak->fTa7 = ak->FTa7 - ( ak->FTa6 + ak->FTl6*log(vlso))/vpole;
411 ak->fTa8 = ak->FTa8 - ak->FTa7/vpole + ak->FTl8*log(vlso);
412/*
413 Pade coefficients of f(v); assumes that a0=1 => c0=1
414*/
415
416 a1 = ak->fTa1;
417 a2 = ak->fTa2;
418 a3 = ak->fTa3;
419 a4 = ak->fTa4;
420 a5 = ak->fTa5;
421 a6 = ak->fTa6;
422 a7 = ak->fTa7;
423 a8 = ak->fTa8;
424
425 c1 = -a1;
426 c2 = -(c1*c1 - a2)/c1;
427 c3 = -(c1*pow(c2+c1,2.) + a3)/(c1*c2);
428 c4 = -(c1*pow(c2+c1,3.) + c1*c2*c3*(c3+2*c2+2*c1) - a4)/(c1*c2*c3);
429 c5 = -(c1*pow(pow(c1+c2,2.)+c2*c3,2.) + c1*c2*c3*pow(c1+c2+c3+c4,2.) + a5)
430 /(c1*c2*c3*c4);
431 c6 = -(c1*pow(c1+c2, 5.)
432 + c1*c2*c3*(pow(c1+c2+c3,3.) + 3.*pow(c1+c2,3.)
433 + 3.*c2*c3*(c1+c2) + c3*c3*(c2-c1))
434 + c1*c2*c3*c4*(pow(c1+c2+c3+c4,2.)
435 + 2.*pow(c1+c2+c3,2.) + c3*(c4-2.*c1))
436 + c1*c2*c3*c4*c5*(c5 + 2.*(c1+c2+c3+c4))
437 - a6)/(c1*c2*c3*c4*c5);
438
439 a12 = a1*a1;
440 a22 = a2*a2;
441 a32 = a3*a3;
442 a42 = a4*a4;
443 a52 = a5*a5;
444 a62 = a6*a6;
445 a72 = a7*a7;
446 a23 = a22*a2;
447 a33 = a32*a3;
448 a43 = a42*a4;
449 a53 = a52*a5;
450 a34 = a33*a3;
451 a44 = a43*a4;
452
453 c7 = ((a23 + a32 + a12*a4 - a2*(2*a1*a3 + a4)) *
454 (-a44 - a32*a52 + a1*a53 - a22*a62 + a33*a7
455 + a22*a5*a7 + a42*(3*a3*a5 + 2*a2*a6 + a1*a7)
456 + a3*(2*a2*a5*a6 + a1*a62 - a1*a5*a7)
457 - 2*a4*((a32 + a1*a5)*a6 + a2*(a52 + a3*a7))))/
458 ((a33 + a1*a42 + a22*a5 - a3*(2*a2*a4 + a1*a5))*
459 (a34 + a22*a42 - a43 - 2*a1*a2*a4*a5 + a12*a52
460 - a2*a52 - a23*a6 - a12*a4*a6 + a2*a4*a6
461 - a32*(3*a2*a4 + 2*a1*a5 + a6)
462 + 2*a3*((a22 + a4)*a5 + a1*(a42 + a2*a6))));
463
464
465 c8 = -(((a33 + a1*a42 + a22*a5 - a3*(2*a2*a4 + a1*a5)) *
466 (pow(a4,5) + pow(a5,4) - 2*a33*a5*a6 + 2*a1*a3*a52*a6
467 + 2*a3*a5*a62 + a12*a62*a6 - 2*a3*a52*a7
468 + 2*a1*a32*a6*a7 - 2*a12*a5*a6*a7 + a32*a72
469 + pow(a3,4)*a8 - 2*a1*a32*a5*a8 + a12*a52*a8
470 - a32*a6*a8 - a43*(4*a3*a5 + 3*a2*a6 + 2*a1*a7 + a8)
471 + a42*(3*a2*a52 + 3*a32*a6 + 4*a1*a5*a6 + a62
472 + 4*a2*a3*a7 + 2*a5*a7 + a22*a8 + 2*a1*a3*a8)
473 + a22*(a52*a6 - 2*a3*a6*a7 + 2*a3*a5*a8)
474 + a22*a2*(a72 - a6*a8) - a4*(3*a52*a6 - 2*a22*a62 + 2*a33*a7
475 + 4*a22*a5*a7 + a2*a72 - a2*a6*a8 - 3*a32*(a52 - a2*a8)
476 + 2*a3*(a2*a5*a6 + 2*a1*a62 + a6*a7 - a5*a8)
477 + 2*a1*(a52*a5 - a2*a6*a7 + a2*a5*a8) + a12*(-a72 + a6*a8))
478 + a2*(-a62*a6 + 2*a5*a6*a7 + 2*a1*a5*(-a62 + a5*a7)
479 + a32*(a62 + 2*a5*a7) - a52*a8
480 - 2*a3*(a52*a5 + a1*(a72 - a6*a8)))))
481 / ((pow(a3,4) + a22*a42 - a43 - 2*a1*a2*a4*a5
482 + a12*a52 - a2*a52 - a22*a2*a6 - a12*a4*a6 + a2*a4*a6
483 - a32*(3*a2*a4 + 2*a1*a5 + a6)
484 + 2*a3*((a22 + a4)*a5 + a1*(a42 + a2*a6)))
485 * (-pow(a4,4) - a32*a52 + a1*a52*a5 - a22*a62 + a33*a7
486 + a22*a5*a7 + a42*(3*a3*a5 + 2*a2*a6 + a1*a7)
487 + a3*(2*a2*a5*a6 + a1*a62 - a1*a5*a7)
488 - 2*a4*((a32 + a1*a5)*a6 + a2*(a52 + a3*a7)))));
489
490 ak->fPa1 = c1;
491 ak->fPa2 = c2;
492 ak->fPa3 = c3;
493 ak->fPa4 = c4;
494 ak->fPa5 = c5;
495 ak->fPa6 = c6;
496 ak->fPa7 = c7;
497 ak->fPa8 = c8;
498
499 /* spinning case */
500 ak->thetahat = 1039.0/4620.0; /* value of thetahat set according to
501 Blanchet et. al, Phys. Rev. Lett. 93, 091101 (2004) */
502
503 ak->ST[LAL_PNORDER_NEWTONIAN] = 1.0;
504 ak->ST[LAL_PNORDER_HALF] = 0.0;
505 ak->ST[LAL_PNORDER_ONE] = ( -(1.0/336.0) * (743.0 + 924.0*eta) );
506 ak->ST[LAL_PNORDER_ONE_POINT_FIVE] = ( 4.0 * LAL_PI );
507 ak->ST[LAL_PNORDER_TWO] = ( (34103.0 + 122949.0*eta + 59472.0*eta*eta)/18144.0 );
508
509 ak->ST[LAL_PNORDER_TWO_POINT_FIVE] = ( -(1.0/672.0) * LAL_PI * (4159.0 + 15876.0*eta) );
510 /* coefficient 15876 corrected (from 14532) according
511 to 2005 erratas for L. Blanchet, Phys. Rev. D 54, 1417 (1996)
512 (see Phys. Rev. D 71 129904 (E) (2005)) and L. Blanchet,
513 B. R. Iyer, and B. Joguet, Phys. Rev. D 65, 064005 (2002)
514 (see Phys. Rev. D 71 129903 (E) (2005)).
515 See errata for Arun et al., Phys. Rev. D 71, 084008
516 (2005) (see Phys. Rev. D 72 069903 (E) (2005))
517 for corrected coefficients
518 */
519
520 /* both ak->ST[6] and [7] are stored for the threePN contribution */
521
522 ak->ST[LAL_PNORDER_THREE] = ( (16447322263.0/139708800.0)
523 - (1712.0/105.0)* ak->EulerC
524 - (273811877.0/1088640.0)*eta - (88.0/3.0)*ak->thetahat*eta
525 + (541.0/896.0)*eta*eta - (5605.0/2592.0)*eta*eta*eta
526 + (1.0/48.0) * LAL_PI*LAL_PI * (256.0 + 451.0*eta)
527 - (856.0/105.0)*log(16.0) );
528 ak->ST[LAL_PNORDER_THREE+1] = ( -(1712.0/315.0) ); /* extra 3PN component */
529 /* sT[8] is the LAL_PNORDER_THREE_POINT_FIVE contribution */
530 ak->ST[8] = (LAL_PI/12096.0) * (-13245.0 + 717350.0*eta + 731960.0*eta*eta);
531 /* coefficients 717350 and 731960 corrected (from 661775 and 599156) according
532 to 2005 erratas for L. Blanchet, Phys. Rev. D 54, 1417 (1996)
533 (see Phys. Rev. D 71 129904 (E) (2005)) and L. Blanchet,
534 B. R. Iyer, and B. Joguet, Phys. Rev. D 65, 064005 (2002)
535 (see Phys. Rev. D 71 129903 (E) (2005)).
536 See errata for Arun et al., Phys. Rev. D 71, 084008
537 (2005) (see Phys. Rev. D 72 069903 (E) (2005))
538 for corrected coefficients
539 */
540
541/*
542 taylorcoeffs[0] = 1.;
543 taylorcoeffs[1] = a1;
544 taylorcoeffs[2] = a2;
545 taylorcoeffs[3] = a3;
546 taylorcoeffs[4] = a4;
547 taylorcoeffs[5] = a5;
548 taylorcoeffs[6] = a6;
549 taylorcoeffs[7] = a7;
550 LALPadeCoeffs7(pnorder, padecoeffs, taylorcoeffs);
551 fprintf(stderr, "%e %e %e %e %e %e %e\n", a1, a2, a3, a4, a5, a6, a7);
552 fprintf(stderr, "%e %e %e %e %e %e %e\n", c1, c2, c3, c4, c5, c6, c7);
553 fprintf(stderr, "%e %e %e %e %e %e %e\n", padecoeffs[1], padecoeffs[2],
554 padecoeffs[3], padecoeffs[4], padecoeffs[5], padecoeffs[6], padecoeffs[7]);
555
556*/
557 return XLAL_SUCCESS;
558
559}
560
561/* pade_coeffs.f -- translated by f2c (version 20000531). */
562
563/* ---------------------------------------------------------------------- */
564/* {\sf pade\_coeffs (int n, real*8 as(0:n), real*8 cs(0:n))} */
565/* ---------------------------------------------------------------------- */
566/* First Version: 4.1.97. */
567/* Purpose: Given Taylor coefficients as(0)...as(n) (n<=11) to */
568/* find (near) diagonal Pade coefficients cc(0)...cc(n) of the */
569/* continued fraction form at various orders. */
570/* AUTHORS: T.Damour, B.R. Iyer and B.S.Sathyaprakash. */
571/* Revision History: Last Update:23.6.97. */
572/* DEPENDENCIES: None. */
573/* INPUTS: */
574/* n: Array size of Taylor coefficients. */
575/* At the moment n can atmost be 11. */
576/* as: Array contianining the Taylor coefficients. */
577/* OUTPUTS: */
578/* cs: Array contianining the Pade coefficients. */
579/* NOTES: Damour, Iyer and Sathyaprakash (1997). */
580/* ---------------------------------------------------------------------- */
581/* Subroutine */
582#if 0
583static void LALPadeCoeffs7(int n, double *cs, double *as)
584{
585 /* System generated locals */
586 int i__1;
587 double d__1;
588
589 /* Local variables */
590 static int i__;
591 static double a0, a1, c0, c1, a2, c2, a3, c3, a4, c4, a5,
592 c5, a6, c6, a7;
593
594 static double t3, t4, t8, t9, t10, t11, t12, t13, t14, t15, t21, t18, t19,
595 t22, t23, t24, t25, t26, t27, t28, t29, t30, t32, t33, t34, t37,
596 t38, t40, t41, t42, t43, t44, t45, t46, t47, t48, t50, t51, t52,
597 t53, t54, t55, t56, t57, t58, t59, t60, t61, t62, t63, t64, t65,
598 t66, t67, t68, t69, t70, t71, t72, t73, t76, t77, t78, t80, t81,
599 t82, t83, t84, t85, t86, t87, t88, t89, t90, t91, t92, t93, t95,
600 t96, t97, t98, t99,
601 t100, t101, t103, t104, t106, t107, t108,
602 t109, t110, t111, t112, t113, t114, t115, t116, t117, t118, t119,
603 t120, t121, t123, t124, t125, t126, t127, t128, t130, t131, t133,
604 t134, t135, t136, t137, t138, t139, t140, t144, t145, t148, t150,
605 t151, t153, t155, t156, t157, t158, t160, t161, t162, t163, t164,
606 t165, t167, t168, t170, t171, t173, t174, t176, t177, t179, t181,
607 t182, t185, t188, t190, t191, t192, t193, t194, t196, t199, t201,
608 t202, t203, t205, t207, t210, t212, t214, t216, t217, t219, t229,
609 t231, t233, t234, t235, t236, t237, t238, t240, t243, t244, t245,
610 t247, t248, t249, t250, t251, t252, t254, t255, t260, t261, t262,
611 t265, t267, t268, t270, t271, t273, t275, t276, t278, t280, t281,
612 t283, t284, t286, t289;
613
614/* ---------------------------------------------------------------------- */
615 a0 = as[0];
616 i__1 = n;
617 for (i__ = 0; i__ <= i__1; ++i__) {
618 cs[i__] = 0.;
619 }
620 cs[0] = a0;
621 if (n == 0 || cs[0] == 0.) {
622 return ;
623 }
624 c0 = cs[0];
625 a1 = as[1];
626 t3 = 1 / c0;
627 cs[1] = -a1 / a0;
628 if (n == 1 || cs[1] == 0.) {
629 return ;
630 }
631 c1 = cs[1];
632 a2 = as[2];
633 t4 = 1 / c1;
634 t8 = c0 * c1;
635 cs[2] = t3 * t4 * a2 - c1;
636 if (n == 2 || cs[2] == 0.) {
637 return ;
638 }
639 c2 = cs[2];
640 a3 = as[3];
641/* Computing 2nd power */
642 d__1 = c2;
643 t9 = d__1 * d__1;
644 t10 = t8 * t9;
645/* Computing 2nd power */
646 d__1 = c1;
647 t11 = d__1 * d__1;
648 t12 = c0 * t11;
649 t13 = t12 * c2;
650 t14 = t11 * c1;
651 t15 = c0 * t14;
652 t18 = 1 / c2;
653 t19 = t4 * t18;
654 cs[3] = -(a3 + t10 + t13 * 2 + t15) * t3 * t19;
655 if (n == 3 || cs[3] == 0.) {
656 return ;
657 }
658 c3 = cs[3];
659 a4 = as[4];
660/* Computing 2nd power */
661 d__1 = c3;
662 t21 = d__1 * d__1;
663 t22 = c2 * t21;
664 t23 = t8 * t22;
665 t24 = t9 * c3;
666 t25 = t8 * t24;
667 t26 = t9 * c2;
668 t27 = t8 * t26;
669 t28 = c2 * c3;
670 t29 = t12 * t28;
671 t30 = t12 * t9;
672 t32 = t14 * c2 * c0;
673/* Computing 2nd power */
674 d__1 = t11;
675 t33 = d__1 * d__1;
676 t34 = c0 * t33;
677 t37 = 1 / c3;
678 t38 = t19 * t37;
679 t40 = t11 * t26;
680 t41 = t40 * c0;
681/* Computing 2nd power */
682 d__1 = t9;
683 t42 = d__1 * d__1;
684 t43 = t8 * t42;
685 t44 = t11 * t9;
686 t45 = c0 * c3;
687 t46 = t44 * t45;
688 t47 = t14 * t9;
689 t48 = t47 * c0;
690 t50 = t33 * c2 * c0;
691 t51 = t33 * c1;
692 t52 = c0 * t51;
693 t53 = t15 * t28;
694 cs[4] = -(-a4 + t23 + t25 * 2 + t27 + t29 * 2 + t30 * 3 + t32 * 3 + t34) *
695 t3 * t38;
696 if (n == 4 || cs[4] == 0.) {
697 return ;
698 }
699 c4 = cs[4];
700 a5 = as[5];
701 t54 = t28 * c4;
702 t55 = t12 * t54;
703 t56 = t12 * t22;
704 t57 = c0 * t9;
705 t58 = t21 * c1;
706 t59 = t57 * t58;
707 t60 = c0 * t26;
708 t61 = c3 * c1;
709 t62 = t60 * t61;
710 t63 = t24 * c4;
711 t64 = t8 * t63;
712/* Computing 2nd power */
713 d__1 = c4;
714 t65 = d__1 * d__1;
715 t66 = t28 * t65;
716 t67 = t8 * t66;
717 t68 = t22 * c4;
718 t69 = t8 * t68;
719 t70 = t21 * c3;
720 t71 = c2 * t70;
721 t72 = t8 * t71;
722 t73 = a5 + t41 * 4 + t43 + t46 * 6 + t48 * 6 + t50 * 4 + t52 + t53 * 3 +
723 t55 * 2 + t56 * 2 + t59 * 3 + t62 * 3 + t64 * 2 + t67 + t69 * 2 +
724 t72;
725 t76 = t18 * t37;
726 t77 = 1 / c4;
727 t78 = t76 * t77;
728 t80 = t21 * t65;
729 t81 = t80 * c2;
730 t82 = t8 * t81;
731 t83 = t26 * c3;
732 t84 = t12 * t83;
733 t85 = t9 * t21;
734 t86 = t85 * c4;
735 t87 = t8 * t86;
736 t88 = c0 * t42;
737 t89 = t88 * t61;
738 t90 = t26 * t21;
739 t91 = t8 * t90;
740 t92 = c3 * c4;
741 cs[5] = -t73 * t3 * t4 * t78;
742 if (n == 5 || cs[5] == 0.) {
743 return ;
744 }
745 c5 = cs[5];
746 a6 = as[6];
747 t93 = t92 * c5;
748 t95 = t34 * t28;
749 t96 = t65 * c4;
750 t97 = t28 * t96;
751 t98 = t8 * t97;
752 t99 = t8 * c2;
753/* Computing 2nd power */
754 d__1 = c5;
755 t100 = d__1 * d__1;
756 t101 = t92 * t100;
757 t103 = t21 * c4;
758 t104 = t103 * c5;
759 t106 = t70 * c4;
760 t107 = t106 * c2;
761 t108 = t8 * t107;
762 t109 = t12 * t85;
763 t110 = t15 * t22;
764 t111 = t15 * t24;
765 t112 = t12 * t66;
766 t113 = t82 * -3 + a6 - t84 * 12 - t87 * 6 - t89 * 4 - t91 * 6 - t13 * 2 *
767 t93 - t95 * 4 - t98 - t99 * t101 - t99 * 2 * t104 - t108 * 3 -
768 t109 * 9 - t110 * 3 - t111 * 12 - t112 * 2;
769 t114 = t24 * t65;
770 t115 = t8 * t114;
771 t116 = t42 * c2;
772 t117 = t8 * t116;
773 t118 = t15 * t54;
774 t119 = t33 * t11;
775 t120 = c0 * t119;
776 t121 = t12 * t63;
777 t123 = t51 * c2 * c0;
778 t124 = t15 * t26;
779/* Computing 2nd power */
780 d__1 = t21;
781 t125 = d__1 * d__1;
782 t126 = c2 * t125;
783 t127 = t8 * t126;
784 t128 = t34 * t9;
785 t130 = c3 * t65;
786 t131 = t130 * c5;
787 t133 = t12 * t42;
788 t134 = t83 * c4;
789 t135 = t8 * t134;
790 t136 = t12 * t68;
791 t137 = t9 * t70;
792 t138 = t8 * t137;
793 t139 = t12 * t71;
794 t140 = t115 * -2 - t117 - t118 * 3 - t120 - t121 * 6 - t123 * 5 - t124 *
795 10 - t127 - t128 * 10 - t10 * 2 * t93 - t99 * 2 * t131 - t133 * 5
796 - t135 * 3 - t136 * 4 - t138 * 4 - t139 * 2;
797 t144 = 1 / c5;
798 t145 = t77 * t144;
799 t148 = t106 * c5;
800 t150 = t125 * c4;
801 t151 = t150 * c2;
802 t153 = t80 * c5;
803 t155 = t26 * t70;
804 t156 = t8 * t155;
805 cs[6] = (t113 + t140) * t3 * t4 * t76 * t145;
806 if (n == 6 || cs[6] == 0.) {
807 return ;
808 }
809 c6 = cs[6];
810 a7 = as[7];
811 t157 = c5 * c6;
812 t158 = t130 * t157;
813 t160 = t125 * c3;
814 t161 = c2 * t160;
815 t162 = t8 * t161;
816/* Computing 2nd power */
817 d__1 = c6;
818 t163 = d__1 * d__1;
819 t164 = c5 * t163;
820 t165 = t92 * t164;
821 t167 = t65 * t100;
822 t168 = t167 * c3;
823 t170 = t96 * c5;
824 t171 = t170 * c3;
825 t173 = t100 * c6;
826 t174 = t92 * t173;
827 t176 = t100 * c5;
828 t177 = t92 * t176;
829 t179 = t92 * t157;
830/* Computing 2nd power */
831 d__1 = t65;
832 t181 = d__1 * d__1;
833 t182 = t28 * t181;
834 t185 = t24 * t96;
835 t188 = t99 * 3 * t148 + t8 * 4 * t151 + t99 * 6 * t153 + t156 * 10 + t99 *
836 2 * t158 + t162 + t99 * t165 + t99 * 3 * t168 + t99 * 3 * t171 +
837 t99 * 2 * t174 + t99 * t177 + t10 * 2 * t179 + t8 * t182 + t10 *
838 2 * t101 + t8 * 2 * t185 + t10 * 4 * t131;
839 t190 = t42 * t21;
840 t191 = t8 * t190;
841 t192 = c0 * t116;
842 t193 = t192 * t61;
843 t194 = t85 * t65;
844 t196 = t137 * c4;
845 t199 = t83 * t65;
846 t201 = t9 * t125;
847 t202 = t8 * t201;
848 t203 = t90 * c4;
849 t205 = t22 * t96;
850 t207 = t71 * t65;
851 t210 = t52 * t28;
852 t212 = t15 * t71;
853 t214 = t10 * 6 * t104 + t191 * 10 + t193 * 5 + t8 * 9 * t194 + t8 * 12 *
854 t196 + t27 * 3 * t93 + t8 * 3 * t199 + t202 * 5 + t8 * 12 * t203
855 + t8 * 4 * t205 + t8 * 6 * t207 + t32 * 3 * t93 + t210 * 5 + t15 *
856 3 * t66 + t212 * 3 + t15 * 6 * t68;
857 t216 = t42 * c3;
858 t217 = t216 * c4;
859 t219 = t12 * t126;
860 t229 = t103 * t157;
861 t231 = t103 * t100;
862 t233 = t34 * t26;
863 t234 = t15 * t42;
864 t235 = t12 * t116;
865 t236 = t8 * 4 * t217 + t219 * 2 + t30 * 6 * t93 + t12 * 6 * t81 + t12 * 6
866 * t114 + t12 * 6 * t107 + t13 * 4 * t104 + t13 * 2 * t179 + t13 *
867 2 * t101 + t13 * 4 * t131 + t12 * 2 * t97 + t99 * 2 * t229 + t99 *
868 2 * t231 + t233 * 20 + t234 * 15 + t235 * 6;
869 t237 = t12 * t216;
870 t238 = t15 * t85;
871 t240 = t12 * t90;
872 t243 = t33 * t14;
873 t244 = c0 * t243;
874 t245 = t34 * t24;
875 t247 = t15 * t83;
876 t248 = t34 * t22;
877 t249 = t12 * t137;
878 t250 = t42 * t9;
879 t251 = t8 * t250;
880 t252 = t52 * t9;
881 t254 = t119 * c2 * c0;
882 t255 = t237 * 20 + t238 * 18 + t12 * 18 * t86 + t240 * 24 + t15 * 12 *
883 t63 + t12 * 12 * t134 + t244 + t245 * 20 + t34 * 4 * t54 + a7 +
884 t247 * 30 + t248 * 4 + t249 * 12 + t251 + t252 * 15 + t254 * 6;
885 t260 = t37 * t77;
886 t261 = 1 / c6;
887 t262 = t144 * t261;
888 t265 = t12 * t250;
889 t267 = t243 * c2 * c0;
890 t268 = t71 * t96;
891 t270 = t181 * c4;
892 t271 = t28 * t270;
893 t273 = t126 * t65;
894 t275 = t160 * c4;
895 t276 = t275 * c2;
896 t278 = t106 * t157;
897 t280 = t21 * t96;
898 t281 = t280 * c5;
899 t283 = t70 * t65;
900 t284 = t283 * c5;
901 t286 = t106 * t100;
902 t289 = c4 * c5;
903 cs[7] = -(t188 + t214 + t236 + t255) * t3 * t19 * t260 * t262;
904 return ;
905} /* LALPadeCoeffs7 */
906 c7 = -(15.*pow(c1,5.)*pow(c2,2.)
907 + 6.*pow(c1,2.)*c2*pow(c3,3.)*c4
908 + 6.*c1*c2*pow(c3,3.)*pow(c4,2.)
909 + a7
910 + c1*pow(c2,6.)
911 + 2.*c1*c2*pow(c3,2.)*c4*c5*c6
912 + 3.*c1*c2*pow(c4,2.)*pow(c5,2.)*c3
913 + c1*c2*c3*c4*c5*pow(c6,2.)
914 + 6.*c1*c2*pow(c3,2.)*pow(c4,2.)*c5
915 + 2.*c1*c2*c3*pow(c4,2.)*c5*c6
916 + 3.*c1*c2*pow(c3,3.)*c4*c5
917 + 3.*c1*c2*pow(c4,3.)*c5*c3
918 + c1*c2*c3*c4*pow(c5,3.)
919 + 4.*pow(c2,2.)*c1*c3*pow(c4,2.)*c5
920 + 2.*pow(c2,2.)*c1*c3*c4*c5*c6
921 + 5.*c1*pow(c2,2.)*pow(c3,4.)
922 + 10.*c1*pow(c2,3.)*pow(c3,3.)
923 + 10.*c1*pow(c2,4.)*pow(c3,2.)
924 + 5.*pow(c2,5.)*c3*c1
925 + pow(c1,7.)
926 + 4.*pow(c1,4.)*c2*c3*c4
927 + 18.*pow(c1,2.)*pow(c2,2.)*pow(c3,2.)*c4
928 + 12.*pow(c1,2.)*pow(c2,3.)*c3*c4
929 + 12.*pow(c1,3.)*pow(c2,2.)*c3*c4
930 + 15.*pow(c1,3.)*pow(c2,4.)
931 + 12.*pow(c1,2.)*pow(c2,2.)*pow(c3,3.)
932 + 24.*pow(c1,2.)*pow(c2,3.)*pow(c3,2.)
933 + 20.*pow(c1,2.)*pow(c2,4.)*c3
934 + 18.*pow(c1,3.)*pow(c2,2.)*pow(c3,2.)
935 + 30.*pow(c1,3.)*pow(c2,3.)*c3
936 + 6.*pow(c1,2.)*pow(c2,5.)
937 + 4.*pow(c1,4.)*c2*pow(c3,2.)
938 + 20.*pow(c1,4.)*pow(c2,2.)*c3
939 + c1*c2*pow(c3,5.)
940 + 20.*pow(c1,4.)*pow(c2,3.)
941 + 6.*c2*pow(c1,6.)
942 + 5.*pow(c1,5.)*c2*c3
943 + 3.*pow(c1,3.)*c2*c3*pow(c4,2.)
944 + 6.*pow(c1,3.)*c2*pow(c3,2.)*c4
945 + 3.*pow(c1,3.)*c2*pow(c3,3.)
946 + 3.*pow(c1,3.)*c2*c3*c4*c5
947 + 2.*pow(c1,2.)*c2*c3*c4*pow(c5,2.)
948 + 6.*pow(c1,2.)*c2*pow(c3,2.)*pow(c4,2.)
949 + 2.*pow(c1,2.)*c2*c3*pow(c4,3.)
950 + 4.*pow(c1,2.)*c2*pow(c3,2.)*c4*c5
951 + 4.*pow(c1,2.)*c2*c3*pow(c4,2.)*c5
952 + 6.*c1*pow(c2,2.)*pow(c3,2.)*c4*c5
953 + 2.*pow(c1,2.)*c2*c3*c4*c5*c6
954 + 6.*pow(c1,2.)*pow(c2,2.)*c3*c4*c5
955 + 2.*pow(c1,2.)*c2*pow(c3,4.)
956 + 6.*pow(c1,2.)*pow(c2,2.)*c3*pow(c4,2.)
957 + 2.*c1*c2*pow(c3,2.)*c4*pow(c5,2.)
958 + 3.*c1*pow(c2,3.)*c3*c4*c5
959 + 9.*c1*pow(c2,2.)*pow(c3,2.)*pow(c4,2.)
960 + 12.*c1*pow(c2,2.)*pow(c3,3.)*c4
961 + 3.*c1*pow(c2,3.)*c3*pow(c4,2.)
962 + 2.*c1*c2*c3*c4*pow(c5,2.)*c6
963 + 12.*c1*pow(c2,3.)*pow(c3,2.)*c4
964 + c1*c2*c3*pow(c4,4.)
965 + 4.*c1*c2*pow(c3,2.)*pow(c4,3.)
966 + 4.*c1*pow(c3,4.)*c4*c2
967 + 4.*c1*pow(c2,4.)*c3*c4
968 + 2.*pow(c2,2.)*c1*c3*pow(c4,3.)
969 + 2.*pow(c2,2.)*c1*c3*c4*pow(c5,2.))/(c1*c2*c3*c4*c5*c6);
970
971 fprintf(stderr, "c7 from old formula=%e\n", c7);
972#endif
void LALInspiralSetup(LALStatus *status, expnCoeffs *ak, InspiralTemplate *params)
int XLALInspiralSetup(expnCoeffs *ak, InspiralTemplate *params)
const double c1
const double c2
const double c0
#define ATTATCHSTATUSPTR(statusptr)
#define DETATCHSTATUSPTR(statusptr)
#define INITSTATUS(statusptr)
#define RETURN(statusptr)
#define ABORTXLAL(sp)
#define fprintf
const double a4
const double a2
#define LAL_PI
#define LAL_MTSUN_SI
#define LAL_GAMMA
double REAL8
int32_t INT4
EOBNRv2HM
EOBNRv2
LAL_PNORDER_TWO_POINT_FIVE
LAL_PNORDER_THREE
LAL_PNORDER_TWO
LAL_PNORDER_ONE
LAL_PNORDER_PSEUDO_FOUR
LAL_PNORDER_THREE_POINT_FIVE
LAL_PNORDER_HALF
LAL_PNORDER_ONE_POINT_FIVE
LAL_PNORDER_NEWTONIAN
#define XLAL_ERROR(...)
int XLALPrintError(const char *fmt,...) _LAL_GCC_PRINTF_FORMAT_(1
#define XLAL_PRINT_DEPRECATION_WARNING(replacement)
XLAL_SUCCESS
XLAL_EFAULT
XLAL_EDOM
XLAL_EINVAL
XLAL_FAILURE
int n
The inspiral waveform parameter structure containing information about the waveform to be generated.
Definition: LALInspiral.h:205
This structure contains various post-Newtonian and P-approximant expansion coefficients; the meanings...
Definition: LALInspiral.h:399
REAL8 pta5
Definition: LALInspiral.h:449
REAL8 thetahat
Definition: LALInspiral.h:464
REAL8 tvl6
Definition: LALInspiral.h:439
REAL8 eTa2
Definition: LALInspiral.h:404
REAL8 fta4
Definition: LALInspiral.h:454
REAL8 ptaN
Definition: LALInspiral.h:449
REAL8 dETaN
Definition: LALInspiral.h:419
REAL8 tva2
Definition: LALInspiral.h:439
REAL8 pva2
Definition: LALInspiral.h:444
REAL8 fTa5
Definition: LALInspiral.h:429
REAL8 fPa7
Definition: LALInspiral.h:434
REAL8 tva6
Definition: LALInspiral.h:439
REAL8 pfa7
Definition: LALInspiral.h:459
REAL8 fTa3
Definition: LALInspiral.h:429
REAL8 ePa1
Definition: LALInspiral.h:409
REAL8 fPa6
Definition: LALInspiral.h:434
REAL8 ftaN
Definition: LALInspiral.h:454
REAL8 tva5
Definition: LALInspiral.h:439
REAL8 fTa8
Definition: LALInspiral.h:429
REAL8 totalmass
Definition: LALInspiral.h:474
REAL8 FTa1
Definition: LALInspiral.h:424
REAL8 ePaN
Definition: LALInspiral.h:409
REAL8 pva3
Definition: LALInspiral.h:444
REAL8 ETaN
Definition: LALInspiral.h:414
REAL8 FTa6
Definition: LALInspiral.h:424
REAL8 tva3
Definition: LALInspiral.h:439
REAL8 tvaN
Definition: LALInspiral.h:439
REAL8 fTa4
Definition: LALInspiral.h:429
REAL8 fPa2
Definition: LALInspiral.h:434
REAL8 vlsoP2
Definition: LALInspiral.h:493
REAL8 eTaN
Definition: LALInspiral.h:404
REAL8 FTa4
Definition: LALInspiral.h:424
REAL8 eTa1
Definition: LALInspiral.h:404
REAL8 tva4
Definition: LALInspiral.h:439
REAL8 lambda
Definition: LALInspiral.h:479
REAL8 vlsoT4
Definition: LALInspiral.h:492
REAL8 pta7
Definition: LALInspiral.h:449
REAL8 fTa7
Definition: LALInspiral.h:429
REAL8 pta4
Definition: LALInspiral.h:449
REAL8 FTaN
Definition: LALInspiral.h:424
REAL8 FTa2
Definition: LALInspiral.h:424
REAL8 vpoleP6
Definition: LALInspiral.h:495
REAL8 EulerC
Definition: LALInspiral.h:479
REAL8 tva7
Definition: LALInspiral.h:439
REAL8 fPa4
Definition: LALInspiral.h:434
REAL8 pfa5
Definition: LALInspiral.h:459
REAL8 vlsoT0
Definition: LALInspiral.h:492
REAL8 dETa2
Definition: LALInspiral.h:419
REAL8 dETa3
Definition: LALInspiral.h:419
REAL8 vpoleP4
Definition: LALInspiral.h:495
REAL8 samplingrate
Definition: LALInspiral.h:469
REAL8 fTa1
Definition: LALInspiral.h:429
REAL8 pva5
Definition: LALInspiral.h:444
REAL8 fPaN
Definition: LALInspiral.h:434
REAL8 vlsoT6
Definition: LALInspiral.h:492
REAL8 vlsoP6
Definition: LALInspiral.h:493
REAL8 ETa1
Definition: LALInspiral.h:414
REAL8 fPa3
Definition: LALInspiral.h:434
REAL8 fPa1
Definition: LALInspiral.h:434
REAL8 FTa7
Definition: LALInspiral.h:424
REAL8 pta2
Definition: LALInspiral.h:449
REAL8 samplinginterval
Definition: LALInspiral.h:469
REAL8 fPa5
Definition: LALInspiral.h:434
REAL8 vlsoT2
Definition: LALInspiral.h:492
REAL8 vlsoP4
Definition: LALInspiral.h:493
REAL8 pva6
Definition: LALInspiral.h:444
REAL8 ST[9]
Definition: LALInspiral.h:464
REAL8 vpolePP
Definition: LALInspiral.h:496
REAL8 fTaN
Definition: LALInspiral.h:429
REAL8 ptl6
Definition: LALInspiral.h:449
REAL8 fta6
Definition: LALInspiral.h:454
REAL8 FTl8
Definition: LALInspiral.h:424
REAL8 pta3
Definition: LALInspiral.h:449
REAL8 fPa8
Definition: LALInspiral.h:434
REAL8 FTa3
Definition: LALInspiral.h:424
REAL8 pva7
Definition: LALInspiral.h:444
REAL8 fTa2
Definition: LALInspiral.h:429
REAL8 pfl5
Definition: LALInspiral.h:459
REAL8 fta2
Definition: LALInspiral.h:454
REAL8 pvl6
Definition: LALInspiral.h:444
REAL8 pva4
Definition: LALInspiral.h:444
REAL8 FTl6
Definition: LALInspiral.h:424
REAL8 vlsoP0
Definition: LALInspiral.h:493
REAL8 ePa2
Definition: LALInspiral.h:409
REAL8 ETa3
Definition: LALInspiral.h:414
REAL8 fta3
Definition: LALInspiral.h:454
REAL8 FTa8
Definition: LALInspiral.h:424
REAL8 pta6
Definition: LALInspiral.h:449
REAL8 FTa5
Definition: LALInspiral.h:424
REAL8 pfa4
Definition: LALInspiral.h:459
REAL8 pfa2
Definition: LALInspiral.h:459
REAL8 omegaS
Definition: LALInspiral.h:479
REAL8 fTa6
Definition: LALInspiral.h:429
REAL8 zeta2
Definition: LALInspiral.h:479
REAL8 ePa3
Definition: LALInspiral.h:409
REAL8 pfa3
Definition: LALInspiral.h:459
REAL8 vlsoPP
Definition: LALInspiral.h:494
REAL8 pfl6
Definition: LALInspiral.h:459
REAL8 fta7
Definition: LALInspiral.h:454
REAL8 eTa3
Definition: LALInspiral.h:404
REAL8 ETa2
Definition: LALInspiral.h:414
REAL8 fta5
Definition: LALInspiral.h:454
REAL8 theta
Definition: LALInspiral.h:479
REAL8 dETa1
Definition: LALInspiral.h:419
REAL8 pfa6
Definition: LALInspiral.h:459
REAL8 pfaN
Definition: LALInspiral.h:459
REAL8 pvaN
Definition: LALInspiral.h:444
REAL8 ftl6
Definition: LALInspiral.h:454