Loading [MathJax]/extensions/TeX/AMSsymbols.js
LALSimulation 6.2.0.1-5e288d3
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
LALSimInspiralSpinTaylorF2.c
Go to the documentation of this file.
1/*
2 * Copyright (C) 2014 Andrew Lundgren
3 * Based on code in LALSimInspiralTaylorF2.c
4 * Copyright (C) 2007 Jolien Creighton, B.S. Sathyaprakash, Thomas Cokelaer
5 * Copyright (C) 2012 Leo Singer, Evan Ochsner, Les Wade, Alex Nitz
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with with program; see the file COPYING. If not, write to the
19 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
20 * MA 02110-1301 USA
21 */
22
23#include <stdlib.h>
24#include <math.h>
25#include <lal/Date.h>
26#include <lal/FrequencySeries.h>
27#include <lal/LALConstants.h>
28#include <lal/LALDatatypes.h>
29#include <lal/LALSimInspiral.h>
30#include <lal/Units.h>
31#include <lal/XLALError.h>
33#include <stdio.h>
34#include <stdbool.h>
35
36#ifndef _OPENMP
37#define omp ignore
38#endif
39
40typedef struct tagLALSimInspiralSF2Orientation
41{
42 REAL8 thetaJ, psiJ;
43 REAL8 chi, kappa, alpha0;
46
47typedef struct tagLALSimInspiralSF2Coeffs
48{
49 REAL8 m1, m2, mtot, eta;
50 REAL8 kappa, kappa_perp, gamma0;
52 REAL8 aclog1, aclog2;
53 REAL8 ac[6];
54 REAL8 zc[7];
56
57// Prototypes
58
59static REAL8 safe_atan2(REAL8 val1, REAL8 val2);
60
63 REAL8 m1, REAL8 m2, REAL8 v_ref,
64 REAL8 lnhatx, REAL8 lnhaty, REAL8 lnhatz,
65 REAL8 s1x, REAL8 s1y, REAL8 s1z);
66
69 REAL8 m1, REAL8 m2, REAL8 chi, REAL8 kappa);
70
72#if 0
73static REAL8 XLALSimInspiralSF2Beta(REAL8 v, LALSimInspiralSF2Coeffs coeffs);
74static REAL8 XLALSimInspiralSF2Zeta(REAL8 v, LALSimInspiralSF2Coeffs coeffs);
75#endif
76
78 REAL8 thetaJ, REAL8 psiJ, int mm);
79
81 REAL8 *emission, REAL8 v, LALSimInspiralSF2Coeffs coeffs);
82
83static REAL8 safe_atan2(REAL8 val1, REAL8 val2)
84{
85 if (val1 == 0. && val2 == 0.)
86 { return 0.; }
87 else
88 { return atan2(val1, val2); }
89}
90
93 REAL8 m1, REAL8 m2, REAL8 v_ref,
94 REAL8 lnhatx, REAL8 lnhaty, REAL8 lnhatz,
95 REAL8 s1x, REAL8 s1y, REAL8 s1z )
96{
97 orientation->v_ref = v_ref;
98 const REAL8 chi1 = sqrt(s1x*s1x+s1y*s1y+s1z*s1z);
99 orientation->chi = chi1;
100 orientation->kappa = (chi1 > 0.) ? (lnhatx*s1x+lnhaty*s1y+lnhatz*s1z)/chi1 : 1.;
101 const REAL8 Jx0 = m1*m2*lnhatx/v_ref + m1*m1*s1x;
102 const REAL8 Jy0 = m1*m2*lnhaty/v_ref + m1*m1*s1y;
103 const REAL8 Jz0 = m1*m2*lnhatz/v_ref + m1*m1*s1z;
104 const REAL8 thetaJ = acos(Jz0 / sqrt(Jx0*Jx0+Jy0*Jy0+Jz0*Jz0));
105 orientation->thetaJ = thetaJ;
106 const REAL8 psiJ = safe_atan2(Jy0, -Jx0);
107 orientation->psiJ = psiJ;
108
109 /* Rotate Lnhat back to frame where J is along z, to figure out initial alpha */
110 const REAL8 rotLx = lnhatx*cos(thetaJ)*cos(psiJ) - lnhaty*cos(thetaJ)*sin(psiJ) + lnhatz*sin(thetaJ);
111 const REAL8 rotLy = lnhatx*sin(psiJ) + lnhaty*cos(psiJ);
112 orientation->alpha0 = safe_atan2(rotLy, rotLx);
113}
114
117 REAL8 m1, REAL8 m2, REAL8 chi, REAL8 kappa )
118{
119 const REAL8 quadparam = 1.;
120 coeffs->m1 = m1;
121 coeffs->m2 = m2;
122 const REAL8 mtot = m1+m2;
123 coeffs->mtot = mtot;
124 const REAL8 eta = m1*m2/(mtot*mtot);
125 coeffs->eta = eta;
126 const REAL8 gamma0 = m1*chi/m2;
127 coeffs->kappa = kappa;
128 coeffs->kappa_perp = sqrt(1.-kappa*kappa);
129 coeffs->gamma0 = gamma0;
130
131 const REAL8 pn_beta = (113.*m1/(12.*mtot) - 19.*eta/6.)*chi*kappa;
132 const REAL8 pn_sigma = ( (5.*quadparam*(3.*kappa*kappa-1.)/2.)
133 + (7. - kappa*kappa)/96. )
134 * (m1*m1*chi*chi/mtot/mtot);
135 const REAL8 pn_gamma = (5.*(146597. + 7056.*eta)*m1/(2268.*mtot)
136 - 10.*eta*(1276. + 153.*eta)/81.)*chi*kappa;
137
138 coeffs->prec_fac = 5.*(4. + 3.*m2/m1)/64.;
139 const REAL8 dtdv2 = 743./336. + 11.*eta/4.;
140 const REAL8 dtdv3 = -4.*LAL_PI + pn_beta;
141 const REAL8 dtdv4 = 3058673./1016064. + 5429.*eta/1008. + 617.*eta*eta/144. - pn_sigma;
142 const REAL8 dtdv5 = (-7729./672.+13.*eta/8.)*LAL_PI + 9.*pn_gamma/40.;
143
144 coeffs->aclog1 = kappa*(1.-kappa*kappa)*gamma0*gamma0*gamma0/2.-dtdv2*kappa*gamma0-dtdv3;
145 coeffs->aclog2 = dtdv2*gamma0+dtdv3*kappa+(1.-kappa*kappa)*(dtdv4-dtdv5*kappa/gamma0)/gamma0/2.;
146 coeffs->ac[0] = -1./3.;
147 coeffs->ac[1] = -gamma0*kappa/6.;
148 coeffs->ac[2] = gamma0*gamma0*(-1./3.+kappa*kappa/2.) - dtdv2;
149 coeffs->ac[3] = dtdv3+dtdv4*kappa/gamma0/2.+dtdv5*(1./3.-kappa*kappa/2.)/gamma0/gamma0;
150 coeffs->ac[4] = dtdv4/2.+dtdv5*kappa/gamma0/6.;
151 coeffs->ac[5] = dtdv5/3.;
152
153 coeffs->zc[0] = -1./3.;
154 coeffs->zc[1] = -gamma0*kappa/2.;
155 coeffs->zc[2] = -dtdv2;
156 coeffs->zc[3] = dtdv2*gamma0*kappa+dtdv3;
157 coeffs->zc[4] = dtdv3*gamma0*kappa+dtdv4;
158 coeffs->zc[5] = (dtdv4*gamma0*kappa+dtdv5)/2.;
159 coeffs->zc[6] = dtdv5*gamma0*kappa/3.;
160}
161
164{
165 const REAL8 gam = coeffs.gamma0*v;
166 const REAL8 kappa = coeffs.kappa;
167
168 const REAL8 sqrtfac = sqrt(1. + 2.*kappa*gam + gam*gam);
169 const REAL8 logfac1 = log((1. + kappa*gam + sqrtfac)/v);
170 const REAL8 logfac2 = log(kappa + gam + sqrtfac);
171
172 const REAL8 aclog1 = coeffs.aclog1;
173 const REAL8 aclog2 = coeffs.aclog2;
174 const REAL8 *ac = coeffs.ac;
175
176 return coeffs.prec_fac * (aclog1*logfac1 + aclog2*logfac2 \
177 + (((ac[0]/v+ac[1])/v+ac[2])/v + ac[3] \
178 + (ac[4]+ac[5]*v)*v)*sqrtfac );
179}
180
181#if 0
182static REAL8 XLALSimInspiralSF2Zeta(
184{
185 const REAL8 *zc = coeffs.zc;
186
187 return coeffs.prec_fac*(((zc[0]/v+zc[1])/v+zc[2])/v + zc[3]*log(v) + \
188 (zc[4]+(zc[5]+zc[6]*v)*v)*v);
189}
190
191static REAL8 XLALSimInspiralSF2Beta(
193{
194 const REAL8 kappa = coeffs.kappa;
195 const REAL8 kappa_perp = coeffs.kappa_perp;
196 const REAL8 gamma0 = coeffs.gamma0;
197
198 REAL8 beta = safe_atan2(gamma0*v*kappa_perp, 1. + kappa*gamma0*v);
199
200 return beta;
201}
202#endif
203
205 REAL8 thetaJ, REAL8 psiJ, int mm)
206{
207 COMPLEX16 plus_fac, cross_fac;
208 switch (mm)
209 {
210 case 2:
211 plus_fac = (1.+cos(thetaJ)*cos(thetaJ))/2.;
212 cross_fac = -1.j*cos(thetaJ);
213 break;
214 case 1:
215 plus_fac = sin(2.*thetaJ);
216 cross_fac = -2.j*sin(thetaJ);
217 break;
218 case 0:
219 plus_fac = 3.*sin(thetaJ)*sin(thetaJ);
220 cross_fac = 0.;
221 break;
222 case -1:
223 plus_fac = -sin(2.*thetaJ);
224 cross_fac = -2.j*sin(thetaJ);
225 break;
226 case -2:
227 plus_fac = (1.+cos(thetaJ)*cos(thetaJ))/2.;
228 cross_fac = 1.j*cos(thetaJ);
229 break;
230 default:
231 plus_fac = 0.;
232 cross_fac = 0.;
233 }
234
235 return plus_fac*cos(2.*psiJ) + cross_fac*sin(2.*psiJ);
236}
237
239 REAL8 *emission, REAL8 v, LALSimInspiralSF2Coeffs coeffs)
240{
241 const REAL8 gam = coeffs.gamma0*v;
242 const REAL8 kappa = coeffs.kappa;
243 const REAL8 kappa_perp = coeffs.kappa_perp;
244
245 const REAL8 sqrtfac = sqrt(1. + 2.*kappa*gam + gam*gam);
246 const REAL8 cosbeta = (1. + kappa*gam)/sqrtfac;
247 const REAL8 sinbeta = (kappa_perp*gam)/sqrtfac;
248
249 emission[0] = (1.+cosbeta)*(1.+cosbeta)/4.;
250 emission[1] = (1.+cosbeta)*sinbeta/4.;
251 emission[2] = sinbeta*sinbeta/4.;
252 emission[3] = (1.-cosbeta)*sinbeta/4.;
253 emission[4] = (1.-cosbeta)*(1.-cosbeta)/4.;
254
255 return;
256}
257
258
259/* FIXME Is this needed?
260 * Find the least nonnegative integer power of 2 that is
261 * greater than or equal to n. Inspired by similar routine
262 * in gstlal.
263static size_t CeilPow2(double n) {
264 double signif;
265 int exponent;
266 signif = frexp(n, &exponent);
267 if (signif < 0)
268 return 1;
269 if (signif == 0.5)
270 exponent -= 1;
271 return ((size_t) 1) << exponent;
272} */
273
274/**
275 * @addtogroup LALSimInspiralSpinTaylor_c
276 * @{
277 */
278
279/**
280 * Computes the stationary phase approximation to the Fourier transform of
281 * a chirp waveform with phase given by \eqref{eq_InspiralFourierPhase_f2}
282 * and amplitude given by expanding \f$1/\sqrt{\dot{F}}\f$. If the PN order is
283 * set to -1, then the highest implemented order is used.
284 *
285 * See arXiv:0810.5336 and arXiv:astro-ph/0504538 for spin corrections
286 * to the phasing.
287 * See arXiv:1303.7412 for spin-orbit phasing corrections at 3 and 3.5PN order
288 */
290 COMPLEX16FrequencySeries **hplus_out, /**< FD hplus waveform */
291 COMPLEX16FrequencySeries **hcross_out, /**< FD hcross waveform */
292 const REAL8 phi_ref, /**< reference orbital phase (rad) */
293 const REAL8 deltaF, /**< frequency resolution */
294 const REAL8 m1_SI, /**< mass of companion 1 (kg) */
295 const REAL8 m2_SI, /**< mass of companion 2 (kg) */
296 const REAL8 s1x, /**< initial value of S1x */
297 const REAL8 s1y, /**< initial value of S1y */
298 const REAL8 s1z, /**< initial value of S1z */
299 const REAL8 lnhatx, /**< initial value of LNhatx */
300 const REAL8 lnhaty, /**< initial value of LNhaty */
301 const REAL8 lnhatz, /**< initial value of LNhatz */
302 const REAL8 fStart, /**< start GW frequency (Hz) */
303 const REAL8 fEnd, /**< highest GW frequency (Hz) of waveform generation - if 0, end at Schwarzschild ISCO */
304 const REAL8 f_ref, /**< Reference GW frequency (Hz) - if 0 reference point is coalescence */
305 const REAL8 r, /**< distance of source (m) */
306 LALDict *moreParams, /**< Linked list of extra. Pass in NULL (or None in python) for standard waveform. Set "sideband",m to get a single sideband (m=-2..2) */
307 const INT4 phaseO, /**< twice PN phase order */
308 const INT4 amplitudeO /**< twice PN amplitude order */
309 )
310{
311 /* external: SI; internal: solar masses */
312 const REAL8 m1 = m1_SI / LAL_MSUN_SI;
313 const REAL8 m2 = m2_SI / LAL_MSUN_SI;
314 const REAL8 m = m1 + m2;
315 const REAL8 m_sec = m * LAL_MTSUN_SI; /* total mass in seconds */
316 const REAL8 eta = m1 * m2 / (m * m);
317 const REAL8 piM = LAL_PI * m_sec;
318 const REAL8 vISCO = 1. / sqrt(6.);
319 const REAL8 fISCO = vISCO * vISCO * vISCO / piM;
320 REAL8 shft, amp0, f_max;
321 size_t i, n, iStart;
322 COMPLEX16 *data_plus = NULL;
323 COMPLEX16 *data_cross = NULL;
324 LIGOTimeGPS tC = {0, 0};
325
326 /* If f_ref = 0, use f_ref = f_low for everything except the phase offset */
327 const REAL8 v_ref = f_ref > 0. ? cbrt(piM*f_ref) : cbrt(piM*fStart);
328
329 REAL8 alpha, alpha_ref;
330 COMPLEX16 prec_plus, prec_cross, phasing_fac;
331 bool enable_precession = true; /* Handle the non-spinning case separately */
332 int mm;
333
335 XLALSimInspiralSF2CalculateOrientation(&orientation, m1, m2, v_ref, lnhatx, lnhaty, lnhatz, s1x, s1y, s1z);
336
338 XLALSimInspiralSF2CalculateCoeffs(&coeffs, m1, m2, orientation.chi, orientation.kappa);
339 enable_precession = orientation.chi != 0. && orientation.kappa != 1. && orientation.kappa != -1.;
340
341 alpha_ref = enable_precession ? XLALSimInspiralSF2Alpha(v_ref, coeffs) - orientation.alpha0 : 0.;
342
343 COMPLEX16 SBplus[5]; /* complex sideband factors for plus pol, mm=2 is first entry */
344 COMPLEX16 SBcross[5]; /* complex sideband factors for cross pol, mm=2 is first entry */
345 REAL8 emission[5]; /* emission factor for each sideband */
347 {
348 for(mm = -2; mm <= 2; mm++)
349 {
350 SBplus[2-mm] = XLALSimInspiralSF2Polarization(orientation.thetaJ, orientation.psiJ, mm);
351 SBcross[2-mm] = XLALSimInspiralSF2Polarization(orientation.thetaJ, orientation.psiJ+LAL_PI/4., mm);
352 }
353 }
354 else
355 {
356 memset(SBplus, 0, 5 * sizeof(COMPLEX16));
357 memset(SBcross, 0, 5 * sizeof(COMPLEX16));
358 mm = (int) XLALSimInspiralWaveformParamsLookupSideband(moreParams);
359 SBplus[2-mm] = XLALSimInspiralSF2Polarization(orientation.thetaJ, orientation.psiJ, mm);
360 SBcross[2-mm] = XLALSimInspiralSF2Polarization(orientation.thetaJ, orientation.psiJ+LAL_PI/4., mm);
361 }
362
363 const REAL8 chi1L = orientation.chi*orientation.kappa;
364 const REAL8 chi1sq = orientation.chi*orientation.chi;
365 /* FIXME: Cannot yet set QM constant in ChooseFDWaveform interface */
366 /* phasing coefficients */
367 PNPhasingSeries pfa;
368 XLALSimInspiralPNPhasing_F2(&pfa, m1, m2, chi1L, 0., chi1sq, 0., 0., moreParams);
369
370 REAL8 pfaN = 0.; REAL8 pfa1 = 0.;
371 REAL8 pfa2 = 0.; REAL8 pfa3 = 0.; REAL8 pfa4 = 0.;
372 REAL8 pfa5 = 0.; REAL8 pfl5 = 0.;
373 REAL8 pfa6 = 0.; REAL8 pfl6 = 0.;
374 REAL8 pfa7 = 0.; REAL8 pfa8 = 0.;
375
376 switch (phaseO)
377 {
378 case -1:
379 case 7:
380 pfa7 = pfa.v[7];
381#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
382 __attribute__ ((fallthrough));
383#endif
384 case 6:
385 pfa6 = pfa.v[6];
386 pfl6 = pfa.vlogv[6];
387#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
388 __attribute__ ((fallthrough));
389#endif
390 case 5:
391 pfa5 = pfa.v[5];
392 pfl5 = pfa.vlogv[5];
393#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
394 __attribute__ ((fallthrough));
395#endif
396 case 4:
397 pfa4 = pfa.v[4];
398#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
399 __attribute__ ((fallthrough));
400#endif
401 case 3:
402 pfa3 = pfa.v[3];
403#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
404 __attribute__ ((fallthrough));
405#endif
406 case 2:
407 pfa2 = pfa.v[2];
408#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
409 __attribute__ ((fallthrough));
410#endif
411 case 1:
412 pfa1 = pfa.v[1];
413#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
414 __attribute__ ((fallthrough));
415#endif
416 case 0:
417 pfaN = pfa.v[0];
418 break;
419 default:
420 XLAL_ERROR(XLAL_ETYPE, "Invalid phase PN order %d", phaseO);
421 }
422
423 /* Add the zeta factor to the phasing, since it looks like a pN series.
424 * This is the third Euler angle after alpha and beta.
425 */
426 if (enable_precession)
427 {
428 pfa2 += 2.*coeffs.prec_fac*coeffs.zc[0];
429 pfa3 += 2.*coeffs.prec_fac*coeffs.zc[1];
430 pfa4 += 2.*coeffs.prec_fac*coeffs.zc[2];
431 pfl5 += 2.*coeffs.prec_fac*coeffs.zc[3];
432 pfa6 += 2.*coeffs.prec_fac*coeffs.zc[4];
433 pfa7 += 2.*coeffs.prec_fac*coeffs.zc[5];
434 pfa8 += 2.*coeffs.prec_fac*coeffs.zc[6];
435 }
436
437 /* Validate expansion order arguments.
438 * This must be done here instead of in the OpenMP parallel loop
439 * because when OpenMP parallelization is turned on, early exits
440 * from loops (via return or break statements) are not permitted.
441 */
442
443 /* Validate amplitude PN order. */
444 if (amplitudeO != 0) { XLAL_ERROR(XLAL_ETYPE, "Invalid amplitude PN order %d", amplitudeO); }
445
446 /* energy coefficients - not currently used, but could for MECO
447 const REAL8 dETaN = 2. * XLALSimInspiralPNEnergy_0PNCoeff(eta);
448 const REAL8 dETa1 = 2. * XLALSimInspiralPNEnergy_2PNCoeff(eta);
449 const REAL8 dETa2 = 3. * XLALSimInspiralPNEnergy_4PNCoeff(eta);
450 const REAL8 dETa3 = 4. * XLALSimInspiralPNEnergy_6PNCoeff(eta);
451 */
452
455
456 /* Perform some initial checks */
457 if (!hplus_out) XLAL_ERROR(XLAL_EFAULT);
458 if (!hcross_out) XLAL_ERROR(XLAL_EFAULT);
459 if (*hplus_out) XLAL_ERROR(XLAL_EFAULT);
460 if (*hcross_out) XLAL_ERROR(XLAL_EFAULT);
461 if (m1_SI <= 0) XLAL_ERROR(XLAL_EDOM);
462 if (m2_SI <= 0) XLAL_ERROR(XLAL_EDOM);
463 if (fStart <= 0) XLAL_ERROR(XLAL_EDOM);
464 if (f_ref < 0) XLAL_ERROR(XLAL_EDOM);
465 if (r <= 0) XLAL_ERROR(XLAL_EDOM);
466
467 /* allocate htilde */
468 if ( fEnd == 0. ) // End at ISCO
469 f_max = fISCO;
470 else // End at user-specified freq.
471 f_max = fEnd;
472 n = (size_t) (f_max / deltaF + 1);
473 XLALGPSAdd(&tC, -1 / deltaF); /* coalesce at t=0 */
474 /* Allocate hplus and hcross */
475 hplus = XLALCreateCOMPLEX16FrequencySeries("hplus: FD waveform", &tC, 0.0, deltaF, &lalStrainUnit, n);
476 if (!hplus) XLAL_ERROR(XLAL_EFUNC);
477 memset(hplus->data->data, 0, n * sizeof(COMPLEX16));
479 hcross = XLALCreateCOMPLEX16FrequencySeries("hcross: FD waveform", &tC, 0.0, deltaF, &lalStrainUnit, n);
480 if (!hcross) XLAL_ERROR(XLAL_EFUNC);
481 memset(hcross->data->data, 0, n * sizeof(COMPLEX16));
483
484 /* extrinsic parameters */
485 amp0 = -4. * m1 * m2 / r * LAL_MRSUN_SI * LAL_MTSUN_SI * sqrt(LAL_PI/12.L);
487 shft = LAL_TWOPI * (tC.gpsSeconds + 1e-9 * tC.gpsNanoSeconds);
488
489 /* Fill with non-zero vals from fStart to f_max */
490 iStart = (size_t) ceil(fStart / deltaF);
491 data_plus = hplus->data->data;
492 data_cross = hcross->data->data;
493
494 /* Compute the SPA phase at the reference point */
495 REAL8 ref_phasing = 0.;
496 if (f_ref > 0.)
497 {
498 const REAL8 logvref = log(v_ref);
499 const REAL8 v2ref = v_ref * v_ref;
500 const REAL8 v3ref = v_ref * v2ref;
501 const REAL8 v4ref = v_ref * v3ref;
502 const REAL8 v5ref = v_ref * v4ref;
503 ref_phasing = (pfaN + pfa1 * v_ref +pfa2 * v2ref + pfa3 * v3ref + pfa4 * v4ref) / v5ref + (pfa5 + pfl5 * logvref) + (pfa6 + pfl6 * logvref) * v_ref + pfa7 * v2ref + pfa8 * v3ref;
504 } /* end of if (f_ref > 0.) */
505
506 #pragma omp parallel for
507 for (i = iStart; i < n; i++) {
508 const REAL8 f = i * deltaF;
509 const REAL8 v = cbrt(piM*f);
510 const REAL8 logv = log(v);
511 const REAL8 v2 = v * v;
512 const REAL8 v3 = v * v2;
513 const REAL8 v4 = v * v3;
514 const REAL8 v5 = v * v4;
515 REAL8 phasing = (pfaN + pfa1*v + pfa2 * v2 + pfa3 * v3 + pfa4 * v4) / v5 + (pfa5 + pfl5 * logv) + (pfa6 + pfl6 * logv) * v + pfa7 * v2 + pfa8 * v3;
516 COMPLEX16 amp = amp0 / (v3 * sqrt(v));
517
518 alpha = enable_precession ? XLALSimInspiralSF2Alpha(v, coeffs) - alpha_ref : 0.;
519
520 COMPLEX16 u = cos(alpha) + 1.0j*sin(alpha);
521 XLALSimInspiralSF2Emission(emission, v, coeffs);
522 prec_plus = SBplus[0]*emission[0]*u*u
523 + SBplus[1]*emission[1]*u
524 + SBplus[2]*emission[2]
525 + SBplus[3]*emission[3]/u
526 + SBplus[4]*emission[4]/u/u;
527 prec_cross= SBcross[0]*emission[0]*u*u
528 + SBcross[1]*emission[1]*u
529 + SBcross[2]*emission[2]
530 + SBcross[3]*emission[3]/u
531 + SBcross[4]*emission[4]/u/u;
532 // Note the factor of 2 b/c phi_ref is orbital phase
533 phasing += shft * f - 2.*phi_ref - ref_phasing - LAL_PI_4;
534 phasing_fac = cos(phasing) - 1.0j*sin(phasing);
535 data_plus[i] = amp * prec_plus * phasing_fac;
536 data_cross[i] = amp * prec_cross * phasing_fac;
537 }
538
539 *hplus_out = hplus;
540 *hcross_out = hcross;
541 return XLAL_SUCCESS;
542}
543
544/** @} */
static double beta(const double a, const double b, const sysq *system)
Internal function that computes the spin-orbit couplings.
static REAL8 UNUSED XLALSimInspiralPNFlux_0PNCoeff(REAL8 eta)
Computes the flux PN Coefficients.
static REAL8 UNUSED XLALSimInspiralPNEnergy_0PNCoeff(REAL8 eta)
Computes the PN Coefficients for using in the PN energy equation.
static void UNUSED XLALSimInspiralPNPhasing_F2(PNPhasingSeries *pfa, const REAL8 m1, const REAL8 m2, const REAL8 chi1L, const REAL8 chi2L, const REAL8 chi1sq, const REAL8 chi2sq, const REAL8 chi1dotchi2, LALDict *p)
static REAL8 safe_atan2(REAL8 val1, REAL8 val2)
static void XLALSimInspiralSF2CalculateOrientation(LALSimInspiralSF2Orientation *orientation, REAL8 m1, REAL8 m2, REAL8 v_ref, REAL8 lnhatx, REAL8 lnhaty, REAL8 lnhatz, REAL8 s1x, REAL8 s1y, REAL8 s1z)
static void XLALSimInspiralSF2Emission(REAL8 *emission, REAL8 v, LALSimInspiralSF2Coeffs coeffs)
static REAL8 XLALSimInspiralSF2Alpha(REAL8 v, LALSimInspiralSF2Coeffs coeffs)
static void XLALSimInspiralSF2CalculateCoeffs(LALSimInspiralSF2Coeffs *coeffs, REAL8 m1, REAL8 m2, REAL8 chi, REAL8 kappa)
static COMPLEX16 XLALSimInspiralSF2Polarization(REAL8 thetaJ, REAL8 psiJ, int mm)
int XLALSimInspiralWaveformParamsSidebandIsDefault(LALDict *params)
INT4 XLALSimInspiralWaveformParamsLookupSideband(LALDict *params)
double i
Definition: bh_ringdown.c:118
double e
Definition: bh_ringdown.c:117
const double u
#define __attribute__(x)
COMPLEX16FrequencySeries * XLALCreateCOMPLEX16FrequencySeries(const CHAR *name, const LIGOTimeGPS *epoch, REAL8 f0, REAL8 deltaF, const LALUnit *sampleUnits, size_t length)
#define LAL_MSUN_SI
#define LAL_PI
#define LAL_TWOPI
#define LAL_MTSUN_SI
#define LAL_PI_4
#define LAL_MRSUN_SI
double complex COMPLEX16
double REAL8
int32_t INT4
int XLALSimInspiralSpinTaylorF2(COMPLEX16FrequencySeries **hplus_out, COMPLEX16FrequencySeries **hcross_out, const REAL8 phi_ref, const REAL8 deltaF, const REAL8 m1_SI, const REAL8 m2_SI, const REAL8 s1x, const REAL8 s1y, const REAL8 s1z, const REAL8 lnhatx, const REAL8 lnhaty, const REAL8 lnhatz, const REAL8 fStart, const REAL8 fEnd, const REAL8 f_ref, const REAL8 r, LALDict *moreParams, const INT4 phaseO, const INT4 amplitudeO)
Computes the stationary phase approximation to the Fourier transform of a chirp waveform with phase g...
static const INT4 r
static const INT4 m
const LALUnit lalStrainUnit
const LALUnit lalSecondUnit
LALUnit * XLALUnitMultiply(LALUnit *output, const LALUnit *unit1, const LALUnit *unit2)
#define XLAL_ERROR(...)
XLAL_SUCCESS
XLAL_EFAULT
XLAL_EFUNC
XLAL_EDOM
XLAL_ETYPE
LIGOTimeGPS * XLALGPSAdd(LIGOTimeGPS *epoch, REAL8 dt)
double alpha
Definition: sgwb.c:106
COMPLEX16Sequence * data
COMPLEX16 * data
INT4 gpsNanoSeconds
REAL8 vlogv[PN_PHASING_SERIES_MAX_ORDER+1]
REAL8 v[PN_PHASING_SERIES_MAX_ORDER+1]
double f_max
Definition: unicorn.c:23