Loading [MathJax]/extensions/TeX/AMSmath.js
LALSimulation 6.2.0.1-6c6b863
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
LALSimInspiralTaylorF2Ecc.c
Go to the documentation of this file.
1/*
2 * Copyright (C) 2019 HyunWon Lee, JeongCho Kim, Chunglee Kim, Marc Favata, K.G. Arun
3 * Assembled from code found in:
4 * - LALInspiralStationaryPhaseApproximation2.c
5 * - LALInspiralChooseModel.c
6 * - LALInspiralSetup.c
7 * - LALSimInspiralTaylorF2ReducedSpin.c
8 * - LALSimInspiralTaylorF2.c
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with with program; see the file COPYING. If not, write to the
22 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
23 * MA 02110-1301 USA
24 */
25/*
26#include <stdlib.h>
27#include <math.h>
28#include <lal/Date.h>
29#include <lal/FrequencySeries.h>
30#include <lal/LALConstants.h>
31#include <lal/Sequence.h>
32#include <lal/LALDatatypes.h>
33#include <lal/LALSimInspiralEOS.h>
34#include <lal/LALSimInspiral.h>
35#include <lal/Units.h>
36#include <lal/XLALError.h>
37#include <lal/AVFactories.h>
38#include "LALSimInspiralPNCoefficients.c"
39*/
40
41#ifndef _OPENMP
42#define omp ignore
43#endif
44
45/**
46 * @addtogroup LALSimInspiralTaylorF2Ecc_c
47 * @brief Routines for generating eccentric TaylorF2 waveforms
48 * @{
49 *
50 * @review TaylorF2Ecc is reviewed, with review statement and git has details available at https://git.ligo.org/waveforms/reviews/taylorf2ecc/wikis/home.
51 *
52 * @name Routines for TaylorF2Ecc Waveforms
53 * @sa
54 * Section IIIF of Alessandra Buonanno, Bala R Iyer, Evan
55 * Ochsner, Yi Pan, and B S Sathyaprakash, "Comparison of post-Newtonian
56 * templates for compact binary inspiral signals in gravitational-wave
57 * detectors", Phys. Rev. D 80, 084043 (2009), arXiv:0907.0700v1
58 *
59 * Section IV of Marc, et al paper Phys. Rev. D 93, 124061 (2016), arXiv:1605.00304.
60 * review page is https://git.ligo.org/waveforms/reviews/taylorf2ecc/wikis/Eccentric-phase-PN-coefficient-form.
61 *
62 * @{
63 */
64
65/**
66 * \author Jeongcho Kim, Chunglee Kim, Hyung Won Lee, Marc Favata, K.G. Arun
67 * \file
68 *
69 * \brief Module to compute the eccentric TaylorF2 inspiral waveform for small eccentricity.
70 * Code is based on Section IV of Marc, et al paper Phys. Rev. D 93, 124061 (2016), arXiv:1605.00304.
71 * Code review page is https://git.ligo.org/waveforms/reviews/taylorf2ecc/wikis/Eccentric-phase-PN-coefficient-form.
72 */
73
75 COMPLEX16FrequencySeries **htilde_out, /**< FD waveform */
76 const REAL8Sequence *freqs, /**< frequency points at which to evaluate the waveform (Hz) */
77 const REAL8 phi_ref, /**< reference orbital phase (rad) */
78 const REAL8 m1_SI, /**< mass of companion 1 (kg) */
79 const REAL8 m2_SI, /**< mass of companion 2 (kg) */
80 const REAL8 f_ref, /**< Reference GW frequency (Hz) - if 0 reference point is coalescence */
81 const REAL8 shft, /**< time shift to be applied to frequency-domain phase (sec)*/
82 const REAL8 r, /**< distance of source (m) */
83 const REAL8 eccentricity, /**< eccentricity effect control < 0 : no eccentricity effect */
84 LALDict *p, /**< Linked list containing the extra parameters >**/
85 PNPhasingSeries *pfaP /**< Phasing coefficients >**/
86 )
87{
88
89 if (!htilde_out) XLAL_ERROR(XLAL_EFAULT);
90 if (!freqs) XLAL_ERROR(XLAL_EFAULT);
91 /* external: SI; internal: solar masses */
92 const REAL8 m1 = m1_SI / LAL_MSUN_SI;
93 const REAL8 m2 = m2_SI / LAL_MSUN_SI;
94 const REAL8 m = m1 + m2;
95 const REAL8 m_sec = m * LAL_MTSUN_SI; /* total mass in seconds */
96 const REAL8 eta = m1 * m2 / (m * m);
97 const REAL8 piM = LAL_PI * m_sec;
98 REAL8 amp0;
99 size_t i;
100 COMPLEX16 *data = NULL;
101 LIGOTimeGPS tC = {0, 0};
102 INT4 iStart = 0;
103
104 COMPLEX16FrequencySeries *htilde = NULL;
105
106 if (*htilde_out) { //case when htilde_out has been allocated in XLALSimInspiralTaylorF2
107 htilde = *htilde_out;
108 iStart = htilde->data->length - freqs->length; //index shift to fill pre-allocated data
109 if(iStart < 0) XLAL_ERROR(XLAL_EFAULT);
110 }
111 else { //otherwise allocate memory here
112 htilde = XLALCreateCOMPLEX16FrequencySeries("htilde: FD waveform", &tC, freqs->data[0], 0., &lalStrainUnit, freqs->length);
113 if (!htilde) XLAL_ERROR(XLAL_EFUNC);
115 }
116
117 /* phasing coefficients */
118 PNPhasingSeries pfa = *pfaP;
119
120 REAL8 pfaN = 0.; REAL8 pfa1 = 0.;
121 REAL8 pfa2 = 0.; REAL8 pfa3 = 0.; REAL8 pfa4 = 0.;
122 REAL8 pfa5 = 0.; REAL8 pfl5 = 0.;
123 REAL8 pfa6 = 0.; REAL8 pfl6 = 0.;
124 REAL8 pfa7 = 0.;
125
127 switch (phaseO)
128 {
129 case -1:
130 case 7:
131 pfa7 = pfa.v[7];
132#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
133 __attribute__ ((fallthrough));
134#endif
135 case 6:
136 pfa6 = pfa.v[6];
137 pfl6 = pfa.vlogv[6];
138#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
139 __attribute__ ((fallthrough));
140#endif
141 case 5:
142 pfa5 = pfa.v[5];
143 pfl5 = pfa.vlogv[5];
144#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
145 __attribute__ ((fallthrough));
146#endif
147 case 4:
148 pfa4 = pfa.v[4];
149#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
150 __attribute__ ((fallthrough));
151#endif
152 case 3:
153 pfa3 = pfa.v[3];
154#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
155 __attribute__ ((fallthrough));
156#endif
157 case 2:
158 pfa2 = pfa.v[2];
159#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
160 __attribute__ ((fallthrough));
161#endif
162 case 1:
163 pfa1 = pfa.v[1];
164#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
165 __attribute__ ((fallthrough));
166#endif
167 case 0:
168 pfaN = pfa.v[0];
169 break;
170 default:
171 XLAL_ERROR(XLAL_ETYPE, "Invalid phase PN order %d", phaseO);
172 }
173
174 /* Validate expansion order arguments.
175 * This must be done here instead of in the OpenMP parallel loop
176 * because when OpenMP parallelization is turned on, early exits
177 * from loops (via return or break statements) are not permitted.
178 */
179
180 /* Validate amplitude PN order. */
182 switch (amplitudeO)
183 {
184 case -1:
185 case 7:
186 case 6:
187 case 5:
188 case 4:
189 case 3:
190 case 2:
191 case 0:
192 break;
193 default:
194 XLAL_ERROR(XLAL_ETYPE, "Invalid amplitude PN order %d", amplitudeO);
195 }
196
197 /* Generate tidal terms separately.
198 * Enums specifying tidal order are in LALSimInspiralWaveformFlags.h
199 */
200 REAL8 pft10 = 0.;
201 REAL8 pft12 = 0.;
202 REAL8 pft13 = 0.;
203 REAL8 pft14 = 0.;
204 REAL8 pft15 = 0.;
206 {
209 pft15 = pfa.v[15];
210#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
211 __attribute__ ((fallthrough));
212#endif
214 pft14 = pfa.v[14];
215#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
216 __attribute__ ((fallthrough));
217#endif
219 pft13 = pfa.v[13];
220#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
221 __attribute__ ((fallthrough));
222#endif
224 pft12 = pfa.v[12];
225#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
226 __attribute__ ((fallthrough));
227#endif
229 pft10 = pfa.v[10];
230#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
231 __attribute__ ((fallthrough));
232#endif
234 break;
235 default:
237 }
238
239 /* The flux and energy coefficients below are used to compute SPA amplitude corrections */
240
241 /* flux coefficients */
242 const REAL8 FTaN = XLALSimInspiralPNFlux_0PNCoeff(eta);
243 const REAL8 FTa2 = XLALSimInspiralPNFlux_2PNCoeff(eta);
244 const REAL8 FTa3 = XLALSimInspiralPNFlux_3PNCoeff(eta);
245 const REAL8 FTa4 = XLALSimInspiralPNFlux_4PNCoeff(eta);
246 const REAL8 FTa5 = XLALSimInspiralPNFlux_5PNCoeff(eta);
248 const REAL8 FTa6 = XLALSimInspiralPNFlux_6PNCoeff(eta);
249 const REAL8 FTa7 = XLALSimInspiralPNFlux_7PNCoeff(eta);
250
251 /* energy coefficients */
252 const REAL8 dETaN = 2. * XLALSimInspiralPNEnergy_0PNCoeff(eta);
253 const REAL8 dETa1 = 2. * XLALSimInspiralPNEnergy_2PNCoeff(eta);
254 const REAL8 dETa2 = 3. * XLALSimInspiralPNEnergy_4PNCoeff(eta);
255 const REAL8 dETa3 = 4. * XLALSimInspiralPNEnergy_6PNCoeff(eta);
256
257
258 /* Perform some initial checks */
259 if (m1_SI <= 0) XLAL_ERROR(XLAL_EDOM);
260 if (m2_SI <= 0) XLAL_ERROR(XLAL_EDOM);
261 if (f_ref < 0) XLAL_ERROR(XLAL_EDOM);
262 if (r <= 0) XLAL_ERROR(XLAL_EDOM);
263
264 /* extrinsic parameters */
265 amp0 = -4. * m1 * m2 / r * LAL_MRSUN_SI * LAL_MTSUN_SI * sqrt(LAL_PI/12.L);
266
267 data = htilde->data->data;
268
269 REAL8 v_ecc_ref = 0.0;
271 if( eccentricity > 0) {
272 v_ecc_ref = cbrt(piM*f_ecc);
273 }
274
275 /* Compute the SPA phase at the reference point
276 * N.B. f_ref == 0 means we define the reference time/phase at "coalescence"
277 * when the frequency approaches infinity. In that case,
278 * the integrals Eq. 3.15 of arXiv:0907.0700 vanish when evaluated at
279 * f_ref == infinity. If f_ref is finite, we must compute the SPA phase
280 * evaluated at f_ref, store it as ref_phasing and subtract it off.
281 */
282 REAL8 ref_phasing = 0.;
284 if( f_ref != 0. ) {
285 const REAL8 vref = cbrt(piM*f_ref);
286 const REAL8 logvref = log(vref);
287 const REAL8 v2ref = vref * vref;
288 const REAL8 v3ref = vref * v2ref;
289 const REAL8 v4ref = vref * v3ref;
290 const REAL8 v5ref = vref * v4ref;
291 const REAL8 v6ref = vref * v5ref;
292 const REAL8 v7ref = vref * v6ref;
293 const REAL8 v8ref = vref * v7ref;
294 const REAL8 v9ref = vref * v8ref;
295 const REAL8 v10ref = vref * v9ref;
296 const REAL8 v12ref = v2ref * v10ref;
297 const REAL8 v13ref = vref * v12ref;
298 const REAL8 v14ref = vref * v13ref;
299 const REAL8 v15ref = vref * v14ref;
300 ref_phasing += pfa7 * v7ref;
301 ref_phasing += (pfa6 + pfl6 * logvref) * v6ref;
302 ref_phasing += (pfa5 + pfl5 * logvref) * v5ref;
303 ref_phasing += pfa4 * v4ref;
304 ref_phasing += pfa3 * v3ref;
305 ref_phasing += pfa2 * v2ref;
306 ref_phasing += pfa1 * vref;
307 ref_phasing += pfaN;
308
309 /* Tidal terms in reference phasing */
310 ref_phasing += pft15 * v15ref;
311 ref_phasing += pft14 * v14ref;
312 ref_phasing += pft13 * v13ref;
313 ref_phasing += pft12 * v12ref;
314 ref_phasing += pft10 * v10ref;
315
316 /* Eccentricity terms in phasing */
317 if( eccentricity > 0 ) {
318 ref_phasing += eccentricityPhasing_F2(vref, v_ecc_ref, eccentricity, eta, ecc_order);
319 }
320
321 ref_phasing /= v5ref;
322 } /* End of if(f_ref != 0) block */
323
324 #pragma omp parallel for
325 for (i = 0; i < freqs->length; i++) {
326 const REAL8 f = freqs->data[i];
327 const REAL8 v = cbrt(piM*f);
328 const REAL8 logv = log(v);
329 const REAL8 v2 = v * v;
330 const REAL8 v3 = v * v2;
331 const REAL8 v4 = v * v3;
332 const REAL8 v5 = v * v4;
333 const REAL8 v6 = v * v5;
334 const REAL8 v7 = v * v6;
335 const REAL8 v8 = v * v7;
336 const REAL8 v9 = v * v8;
337 const REAL8 v10 = v * v9;
338 const REAL8 v12 = v2 * v10;
339 const REAL8 v13 = v * v12;
340 const REAL8 v14 = v * v13;
341 const REAL8 v15 = v * v14;
342 REAL8 phasing = 0.;
343 REAL8 dEnergy = 0.;
344 REAL8 flux = 0.;
345 REAL8 amp;
346
347 phasing += pfa7 * v7;
348 phasing += (pfa6 + pfl6 * logv) * v6;
349 phasing += (pfa5 + pfl5 * logv) * v5;
350 phasing += pfa4 * v4;
351 phasing += pfa3 * v3;
352 phasing += pfa2 * v2;
353 phasing += pfa1 * v;
354 phasing += pfaN;
355
356 /* Tidal terms in phasing */
357 phasing += pft15 * v15;
358 phasing += pft14 * v14;
359 phasing += pft13 * v13;
360 phasing += pft12 * v12;
361 phasing += pft10 * v10;
362
363 /* Eccentricity terms in phasing */
364 if( eccentricity > 0 ) {
365 phasing += eccentricityPhasing_F2(v, v_ecc_ref, eccentricity, eta, ecc_order);
366 }
367 phasing /= v5;
368
369 /* WARNING! Amplitude orders beyond 0 have NOT been reviewed!
370 * Use at your own risk. The default is to turn them off.
371 * These do not currently include spin corrections.
372 * Note that these are not higher PN corrections to the amplitude.
373 * They are the corrections to the leading-order amplitude arising
374 * from the stationary phase approximation. See for instance
375 * Eq 6.9 of arXiv:0810.5336
376 */
377 switch (amplitudeO)
378 {
379 case 7:
380 flux += FTa7 * v7;
381#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
382 __attribute__ ((fallthrough));
383#endif
384 case 6:
385 flux += (FTa6 + FTl6*logv) * v6;
386 dEnergy += dETa3 * v6;
387#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
388 __attribute__ ((fallthrough));
389#endif
390 case 5:
391 flux += FTa5 * v5;
392#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
393 __attribute__ ((fallthrough));
394#endif
395 case 4:
396 flux += FTa4 * v4;
397 dEnergy += dETa2 * v4;
398#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
399 __attribute__ ((fallthrough));
400#endif
401 case 3:
402 flux += FTa3 * v3;
403#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
404 __attribute__ ((fallthrough));
405#endif
406 case 2:
407 flux += FTa2 * v2;
408 dEnergy += dETa1 * v2;
409#if __GNUC__ >= 7 && !defined __INTEL_COMPILER
410 __attribute__ ((fallthrough));
411#endif
412 case -1: /* Default to no SPA amplitude corrections */
413 case 0:
414 flux += 1.;
415 dEnergy += 1.;
416 }
417
418 flux *= FTaN * v10;
419 dEnergy *= dETaN * v;
420 // Note the factor of 2 b/c phi_ref is orbital phase
421 phasing += shft * f - 2.*phi_ref - ref_phasing;
422 amp = amp0 * sqrt(-dEnergy/flux) * v;
423 data[i+iStart] = amp * cos(phasing - LAL_PI_4)
424 - amp * sin(phasing - LAL_PI_4) * 1.0j;
425 }
426
427 *htilde_out = htilde;
428 return XLAL_SUCCESS;
429}
430
431/**
432 * Computes the stationary phase approximation to the Fourier transform of
433 * a chirp waveform with eccentric correction. The amplitude is given by expanding \f$1/\sqrt{\dot{F}}\f$.
434 * If the PN order is set to -1, then the highest implemented order is used.
435 *
436 * @note f_ref is the GW frequency at which phi_ref is defined. The most common
437 * choice in the literature is to choose the reference point as "coalescence",
438 * when the frequency becomes infinite. This is the behavior of the code when
439 * f_ref==0. If f_ref > 0, phi_ref sets the orbital phase at that GW frequency.
440 *
441 * See arXiv:0810.5336 and arXiv:astro-ph/0504538 for spin corrections
442 * to the phasing.
443 * See arXiv:1303.7412 for spin-orbit phasing corrections at 3 and 3.5PN order
444 * See Phys. Rev. Lett. 112, 101101(2014) for eccentric phasing corrections upto 3PN order
445 *
446 * The spin and tidal order enums are defined in LALSimInspiralWaveformFlags.h
447 */
449 COMPLEX16FrequencySeries **htilde_out, /**< FD waveform */
450 const REAL8 phi_ref, /**< reference orbital phase (rad) */
451 const REAL8 deltaF, /**< frequency resolution */
452 const REAL8 m1_SI, /**< mass of companion 1 (kg) */
453 const REAL8 m2_SI, /**< mass of companion 2 (kg) */
454 const REAL8 S1z, /**< z component of the spin of companion 1 */
455 const REAL8 S2z, /**< z component of the spin of companion 2 */
456 const REAL8 fStart, /**< start GW frequency (Hz) */
457 const REAL8 fEnd, /**< highest GW frequency (Hz) of waveform generation - if 0, end at Schwarzschild ISCO */
458 const REAL8 f_ref, /**< Reference GW frequency (Hz) - if 0 reference point is coalescence */
459 const REAL8 r, /**< distance of source (m) */
460 const REAL8 eccentricity, /**< eccentricity effect control < 0 : no eccentricity effect */
461 LALDict *p /**< Linked list containing the extra parameters >**/
462 )
463{
464 /* external: SI; internal: solar masses */
465 const REAL8 m1 = m1_SI / LAL_MSUN_SI;
466 const REAL8 m2 = m2_SI / LAL_MSUN_SI;
467 const REAL8 m = m1 + m2;
468 const REAL8 m_sec = m * LAL_MTSUN_SI; /* total mass in seconds */
469 // const REAL8 eta = m1 * m2 / (m * m);
470 const REAL8 piM = LAL_PI * m_sec;
471 const REAL8 vISCO = 1. / sqrt(6.);
472 const REAL8 fISCO = vISCO * vISCO * vISCO / piM;
473 //const REAL8 m1OverM = m1 / m;
474 // const REAL8 m2OverM = m2 / m;
475 REAL8 shft, f_max;
476 size_t i, n;
477 INT4 iStart;
478 REAL8Sequence *freqs = NULL;
479 LIGOTimeGPS tC = {0, 0};
480 int ret;
481 int retcode;
482 REAL8 fCONT;
487 XLAL_CHECK(retcode == XLAL_SUCCESS, XLAL_EFUNC, "Failed to set quadparams from Universal relation.\n");
488
489 COMPLEX16FrequencySeries *htilde = NULL;
490
491 /* Perform some initial checks */
492 if (!htilde_out) XLAL_ERROR(XLAL_EFAULT);
493 if (*htilde_out) XLAL_ERROR(XLAL_EFAULT);
494 if (m1_SI <= 0) XLAL_ERROR(XLAL_EDOM);
495 if (m2_SI <= 0) XLAL_ERROR(XLAL_EDOM);
496 if (fStart <= 0) XLAL_ERROR(XLAL_EDOM);
497 if (f_ref < 0) XLAL_ERROR(XLAL_EDOM);
498 if (r <= 0) XLAL_ERROR(XLAL_EDOM);
499 if (eccentricity < 0.0 || eccentricity >= 1.0) XLAL_ERROR(XLAL_EDOM);
500
501 /* allocate htilde */
502 if ( (fEnd == 0.) && ( tideO == 0)) // End at ISCO
503 f_max = fISCO;
504 else if ( (fEnd == 0.) && ( tideO != 0 )) { // End at the minimum of the contact and ISCO frequencies only when tides are enabled
505 fCONT = XLALSimInspiralContactFrequency(m1, lambda1, m2, lambda2); /* Contact frequency of two compact objects */
506 f_max = (fCONT > fISCO) ? fISCO : fCONT;
507 }
508 else // End at user-specified freq.
509 f_max = fEnd;
510 if (f_max <= fStart) XLAL_ERROR(XLAL_EDOM);
511
512 n = (size_t) (f_max / deltaF + 1);
513 XLALGPSAdd(&tC, -1 / deltaF); /* coalesce at t=0 */
514 htilde = XLALCreateCOMPLEX16FrequencySeries("htilde: FD waveform", &tC, 0.0, deltaF, &lalStrainUnit, n);
515 if (!htilde) XLAL_ERROR(XLAL_EFUNC);
516 memset(htilde->data->data, 0, n * sizeof(COMPLEX16));
518
519 /* Fill with non-zero vals from fStart to f_max */
520 iStart = (INT4) ceil(fStart / deltaF);
521
522 /* Sequence of frequencies where waveform model is to be evaluated */
523 freqs = XLALCreateREAL8Sequence(n - iStart);
524
525 /* extrinsic parameters */
526 shft = LAL_TWOPI * (tC.gpsSeconds + 1e-9 * tC.gpsNanoSeconds);
527
528 #pragma omp parallel for
529 for (i = iStart; i < n; i++) {
530 freqs->data[i-iStart] = i * deltaF;
531 }
532
533 /* phasing coefficients */
534 PNPhasingSeries pfa;
535 XLALSimInspiralPNPhasing_F2(&pfa, m1, m2, S1z, S2z, S1z*S1z, S2z*S2z, S1z*S2z, p);
536 ret = XLALSimInspiralTaylorF2CoreEcc(&htilde, freqs, phi_ref, m1_SI, m2_SI,
537 f_ref, shft, r, eccentricity, p, &pfa);
538
540
541 *htilde_out = htilde;
542
543 return ret;
544}
545
546/** @} */
547/** @} */
int XLALSimInspiralSetQuadMonParamsFromLambdas(LALDict *LALparams)
if you do NOT provide a quadparam[1,2] term and you DO provide lamdba[1,2] then we calculate quad-mon...
REAL8 XLALSimInspiralContactFrequency(REAL8 m1_intr, REAL8 barlambda1, REAL8 m2_intr, REAL8 barlambda2)
This function estimates the radius for a binary of given masses and tidal deformability parameters.
static REAL8 UNUSED XLALSimInspiralPNFlux_5PNCoeff(REAL8 eta)
static REAL8 UNUSED XLALSimInspiralPNEnergy_4PNCoeff(REAL8 eta)
static REAL8 UNUSED XLALSimInspiralPNFlux_0PNCoeff(REAL8 eta)
Computes the flux PN Coefficients.
static REAL8 UNUSED XLALSimInspiralPNFlux_3PNCoeff(REAL8 UNUSED eta)
static REAL8 UNUSED XLALSimInspiralPNEnergy_2PNCoeff(REAL8 eta)
static REAL8 UNUSED XLALSimInspiralPNFlux_4PNCoeff(REAL8 eta)
static REAL8 UNUSED eccentricityPhasing_F2(REAL8 v, REAL8 v0, REAL8 ecc, REAL8 eta, INT4 ecc_order)
Compute eccentric phase correction term using eccPNCeoffs[k][i][j].
static REAL8 UNUSED XLALSimInspiralPNEnergy_0PNCoeff(REAL8 eta)
Computes the PN Coefficients for using in the PN energy equation.
static REAL8 UNUSED XLALSimInspiralPNFlux_2PNCoeff(REAL8 eta)
static REAL8 UNUSED XLALSimInspiralPNFlux_7PNCoeff(REAL8 eta)
static REAL8 UNUSED XLALSimInspiralPNFlux_6PNCoeff(REAL8 eta)
static REAL8 UNUSED XLALSimInspiralPNFlux_6PNLogCoeff(REAL8 UNUSED eta)
static void UNUSED XLALSimInspiralPNPhasing_F2(PNPhasingSeries *pfa, const REAL8 m1, const REAL8 m2, const REAL8 chi1L, const REAL8 chi2L, const REAL8 chi1sq, const REAL8 chi2sq, const REAL8 chi1dotchi2, LALDict *p)
static REAL8 UNUSED XLALSimInspiralPNEnergy_6PNCoeff(REAL8 eta)
REAL8 XLALSimInspiralWaveformParamsLookupTidalLambda2(LALDict *params)
REAL8 XLALSimInspiralWaveformParamsLookupEccentricityFreq(LALDict *params)
REAL8 XLALSimInspiralWaveformParamsLookupTidalLambda1(LALDict *params)
INT4 XLALSimInspiralWaveformParamsLookupPNPhaseOrder(LALDict *params)
INT4 XLALSimInspiralWaveformParamsLookupPNAmplitudeOrder(LALDict *params)
INT4 XLALSimInspiralWaveformParamsLookupPNTidalOrder(LALDict *params)
INT4 XLALSimInspiralWaveformParamsLookupPNEccentricityOrder(LALDict *params)
double i
Definition: bh_ringdown.c:118
double e
Definition: bh_ringdown.c:117
sigmaKerr data[0]
#define __attribute__(x)
COMPLEX16FrequencySeries * XLALCreateCOMPLEX16FrequencySeries(const CHAR *name, const LIGOTimeGPS *epoch, REAL8 f0, REAL8 deltaF, const LALUnit *sampleUnits, size_t length)
#define LAL_MSUN_SI
#define LAL_PI
#define LAL_TWOPI
#define LAL_MTSUN_SI
#define LAL_PI_4
#define LAL_MRSUN_SI
double complex COMPLEX16
double REAL8
int32_t INT4
@ LAL_SIM_INSPIRAL_TIDAL_ORDER_5PN
@ LAL_SIM_INSPIRAL_TIDAL_ORDER_6PN
@ LAL_SIM_INSPIRAL_TIDAL_ORDER_ALL
@ LAL_SIM_INSPIRAL_TIDAL_ORDER_75PN
@ LAL_SIM_INSPIRAL_TIDAL_ORDER_7PN
@ LAL_SIM_INSPIRAL_TIDAL_ORDER_0PN
@ LAL_SIM_INSPIRAL_TIDAL_ORDER_65PN
int XLALSimInspiralTaylorF2Ecc(COMPLEX16FrequencySeries **htilde_out, const REAL8 phi_ref, const REAL8 deltaF, const REAL8 m1_SI, const REAL8 m2_SI, const REAL8 S1z, const REAL8 S2z, const REAL8 fStart, const REAL8 fEnd, const REAL8 f_ref, const REAL8 r, const REAL8 eccentricity, LALDict *p)
Computes the stationary phase approximation to the Fourier transform of a chirp waveform with eccentr...
int XLALSimInspiralTaylorF2CoreEcc(COMPLEX16FrequencySeries **htilde_out, const REAL8Sequence *freqs, const REAL8 phi_ref, const REAL8 m1_SI, const REAL8 m2_SI, const REAL8 f_ref, const REAL8 shft, const REAL8 r, const REAL8 eccentricity, LALDict *p, PNPhasingSeries *pfaP)
static const INT4 r
static const INT4 m
void XLALDestroyREAL8Sequence(REAL8Sequence *sequence)
REAL8Sequence * XLALCreateREAL8Sequence(size_t length)
const LALUnit lalStrainUnit
const LALUnit lalSecondUnit
LALUnit * XLALUnitMultiply(LALUnit *output, const LALUnit *unit1, const LALUnit *unit2)
#define XLAL_ERROR(...)
#define XLAL_CHECK(assertion,...)
XLAL_SUCCESS
XLAL_EFAULT
XLAL_EFUNC
XLAL_EDOM
XLAL_ETYPE
XLAL_EINVAL
LIGOTimeGPS * XLALGPSAdd(LIGOTimeGPS *epoch, REAL8 dt)
p
COMPLEX16Sequence * data
COMPLEX16 * data
INT4 gpsNanoSeconds
REAL8 vlogv[PN_PHASING_SERIES_MAX_ORDER+1]
REAL8 v[PN_PHASING_SERIES_MAX_ORDER+1]
REAL8 * data
double f_max
Definition: unicorn.c:23