BAYESTAR Rapid Localization (ligo.skymap.bayestar
)¶
Rapid sky localization with BAYESTAR [1].
References¶
Singer & Price, 2016. “Rapid Bayesian position reconstruction for gravitational-wave transients.” PRD, 93, 024013. doi:10.1103/PhysRevD.93.024013
- ligo.skymap.bayestar.localize(event, waveform='o2-uberbank', f_low=30.0, min_distance=None, max_distance=None, prior_distance_power=None, cosmology=False, mcmc=False, chain_dump=None, enable_snr_series=True, f_high_truncate=0.95, rescale_loglikelihood=0.83)[source]¶
Localize a compact binary signal using the BAYESTAR algorithm.
- Parameters:
- event
ligo.skymap.io.events.Event
The event candidate.
- waveformstr, optional
The name of the waveform approximant.
- f_lowfloat, optional
The low frequency cutoff.
- min_distance, max_distancefloat, optional
The limits of integration over luminosity distance, in Mpc (default: determine automatically from detector sensitivity).
- prior_distance_powerint, optional
The power of distance that appears in the prior (default: 2, uniform in volume).
- cosmology: bool, optional
Set to enable a uniform in comoving volume prior (default: false).
- mcmcbool, optional
Set to use MCMC sampling rather than more accurate Gaussian quadrature.
- chain_dumpstr, optional
Save posterior samples to this filename if
mcmc
is set.- enable_snr_seriesbool, optional
Set to False to disable SNR time series.
- f_high_truncatefloat, optional
Truncate the noise power spectral densities at this factor times the highest sampled frequency to suppress artifacts caused by incorrect PSD conditioning by some matched filter pipelines.
- event
- Returns:
- skymap
astropy.table.Table
A 3D sky map in multi-order HEALPix format.
- skymap
- ligo.skymap.bayestar.signal_amplitude_model(x1, x2, x3, x4, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True[, signature, extobj])¶