Loading [MathJax]/extensions/TeX/AMSsymbols.js
LALInference 4.1.9.1-5e288d3
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
cbcBayesPostProc.py File Reference

Prototypes

def cbcBayesPostProc.email_notify (address, path)
 
def cbcBayesPostProc.pickle_to_file (obj, fname)
 Pickle/serialize 'obj' into 'fname'. More...
 
def cbcBayesPostProc.oneD_dict_to_file (dict, fname)
 
def cbcBayesPostProc.multipleFileCB (opt, opt_str, value, parser)
 
def cbcBayesPostProc.dict2html (d, parent=None)
 
def cbcBayesPostProc.extract_hdf5_metadata (h5grp, parent=None)
 
def cbcBayesPostProc.cbcBayesPostProc (outdir, data, oneDMenus, twoDGreedyMenu, GreedyRes, confidence_levels, twoDplots, injfile=None, eventnum=None, trigfile=None, trignum=None, skyres=None, dievidence=False, boxing=64, difactor=1.0, ellevidence=False, bayesfactornoise=None, bayesfactorcoherent=None, snrfactor=None, ns_flag=False, ns_Nlive=None, ss_flag=False, ss_spin_flag=False, li_flag=False, deltaLogP=None, fixedBurnins=None, nDownsample=None, oldMassConvention=False, fm_flag=False, inj_spin_frame='OrbitalL', noacf=False, twodkdeplots=False, RconvergenceTests=False, savepdfs=True, covarianceMatrices=None, meanVectors=None, header=None, psd_files=None, greedy=True ## If true will use greedy bin for 1-d credible regions. Otherwise use 2-steps KDE)
 This is a demonstration script for using the functionality/data structures contained in lalinference.bayespputils . More...
 

Go to the source code of this file.

Namespaces

namespace  cbcBayesPostProc
 

Variables

int cbcBayesPostProc.fig_width_pt = 246
 
float cbcBayesPostProc.inches_per_pt = 1.0/72.27
 
tuple cbcBayesPostProc.golden_mean = (2.236-1.0)/2.0
 
int cbcBayesPostProc.fig_width = fig_width_pt*inches_per_pt
 
int cbcBayesPostProc.fig_height = fig_width*golden_mean
 
list cbcBayesPostProc.fig_size = [fig_width,fig_height]
 
string cbcBayesPostProc.USAGE
 
 cbcBayesPostProc.parser = OptionParser(USAGE)
 
 cbcBayesPostProc.dest
 
 cbcBayesPostProc.help
 
 cbcBayesPostProc.metavar
 
 cbcBayesPostProc.action
 
 cbcBayesPostProc.callback
 
 cbcBayesPostProc.multipleFileCB
 
 cbcBayesPostProc.default
 
 cbcBayesPostProc.None
 
 cbcBayesPostProc.type
 
 cbcBayesPostProc.False
 
 cbcBayesPostProc.True
 
 cbcBayesPostProc.opts
 
 cbcBayesPostProc.args
 
list cbcBayesPostProc.datafiles = []
 
list cbcBayesPostProc.fixedBurnins = [int(opts.fixedBurnin[0]) for df in datafiles]
 
dictionary cbcBayesPostProc.oneDMenus = {'Masses':None,'SourceFrame':None,'Timing':None,'Extrinsic':None,'Spins':None,'StrongField':None,'Others':None}
 
list cbcBayesPostProc.ifos_menu = ['h1','l1','v1']
 
list cbcBayesPostProc.twoDGreedyMenu = []
 
 cbcBayesPostProc.greedyBinSizes = bppu.greedyBinSizes
 
 cbcBayesPostProc.deltaLogP = opts.deltaLogL
 
 cbcBayesPostProc.confidenceLevels = bppu.confidenceLevels
 
list cbcBayesPostProc.twoDplots = twoDGreedyMenu
 
 cbcBayesPostProc.injfile
 
 cbcBayesPostProc.eventnum
 
 cbcBayesPostProc.trigfile
 
 cbcBayesPostProc.trignum
 
 cbcBayesPostProc.skyres
 
 cbcBayesPostProc.dievidence
 
 cbcBayesPostProc.boxing
 
 cbcBayesPostProc.difactor
 
 cbcBayesPostProc.ellevidence
 
 cbcBayesPostProc.bayesfactornoise
 
 cbcBayesPostProc.bsn
 
 cbcBayesPostProc.bayesfactorcoherent
 
 cbcBayesPostProc.snrfactor
 
 cbcBayesPostProc.ns_flag
 
 cbcBayesPostProc.ns
 
 cbcBayesPostProc.ns_Nlive
 
 cbcBayesPostProc.ss_flag
 
 cbcBayesPostProc.ss
 
 cbcBayesPostProc.ss_spin_flag
 
 cbcBayesPostProc.li_flag
 
 cbcBayesPostProc.lalinfmcmc
 
 cbcBayesPostProc.nDownsample
 
 cbcBayesPostProc.downsample
 
 cbcBayesPostProc.oldMassConvention
 
 cbcBayesPostProc.fm_flag
 
 cbcBayesPostProc.inj_spin_frame
 
 cbcBayesPostProc.noacf
 
 cbcBayesPostProc.twodkdeplots
 
 cbcBayesPostProc.RconvergenceTests
 
 cbcBayesPostProc.savepdfs
 
 cbcBayesPostProc.covarianceMatrices
 
 cbcBayesPostProc.meanVectors
 
 cbcBayesPostProc.header
 
 cbcBayesPostProc.psd_files
 
 cbcBayesPostProc.greedy