Loading [MathJax]/extensions/TeX/AMSsymbols.js
LALInspiral 5.0.3.1-8a6b96f
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
Module LALInspiralBankUtils.c

Detailed Description

NONE.

Author
Cokelaer Thomas

Description

In a parameter space defined by \(m_1\) and \(m_2\), or equivalently, \(M=m_1+m_2\) and \(\eta=\frac{m_1 m_2}{M^2}\), the conversion to chirp-time parameter such as \(\tau_0\) and \(\tau_3\) si quite common. In particular, it is interesting to get the value of \(\tau_3\) when only \(\tau_0\) is known, and a constraint on the masses exists (e.g., \(m_1=m_2\) or one of the mass equals mMin or mMax. This modules contains a few functions to perform these conversion.

Algorithm

We know that

\begin{equation} \label{eq_tau0a} \tau_0 = \frac{A_0}{\eta} M^{-5/2}, \end{equation}

and

\begin{equation} \tau_3 = \frac{A_3}{\eta} M^{-2/3}, \end{equation}

where

\begin{equation} A_0 = \frac{5}{256 (\pi *f_L)^{8/3}}, \end{equation}

and

\begin{equation} A_3 = \frac{\pi}{8 (\pi *f_L)^{5/3}}, \end{equation}

Therefore, it is straightforward to express \(\tau_3\) as a function of \(\tau_0\) amd \(\eta\):

\begin{equation} \label{eq_tau3b} \tau_3 = \frac{A3}{\eta} \left( \frac{\tau_0 \eta}{ A_0} \right)^{2/5} \end{equation}

if \(\eta=0.25\) on the equal-mass line, then

\begin{equation} \label{eq_tau3a} \tau_3 = 4 A3 \left( \frac{\tau_0}{ 4 A_0} \right)^{2/5} \end{equation}

Eq. \eqref{eq_tau3b} returns \(\tau_3\) given in \(M, \eta\) and \(f_L\) and is defined inXLALInspiralTau3FromNonEqualMass().

Eq. \eqref{eq_tau3a} returns tau3 in the particular case \(m_1=m_2\), given \(\tau_0\) only, and is defined in XLALInspiralTau3FromTau0AndEqualMassLine().

Eq. \eqref{eq_tau0a} returns \(tau_0\) given \(M, \eta\) and \(f_L\), and is defined XLALInspiralTau0FromMEta().

Finally, XLALInspiralMFromTau0AndNonEqualMass() returns \(M\) when \(\tau_0\) is known and a constraint exists on one of the individual mass (e.g., \(m_1=\textrm{mMax}\) or \(m_1=\textrm{mMin}\)). This functions requires a little more algebra and is used in the HybridHexagonal placement. The Module LALInspiralHybridHexagonalBank.c describes this algebra.

Prototypes

REAL4 XLALInspiralTau3FromTau0AndEqualMassLine (REAL4 tau0, REAL4 fL)
 
REAL4 XLALInspiralTau3FromNonEqualMass (REAL4 M, REAL4 eta, REAL4 fL)
 
REAL4 XLALInspiralTau0FromMEta (REAL4 M, REAL4 eta, REAL4 fL)
 
REAL8 XLALInspiralMFromTau0AndNonEqualMass (REAL8 tau0, REAL8 extremMass, REAL8 fL)
 

Function Documentation

◆ XLALInspiralTau3FromTau0AndEqualMassLine()

REAL4 XLALInspiralTau3FromTau0AndEqualMassLine ( REAL4  tau0,
REAL4  fL 
)
See also
See Module LALInspiralBankUtils.c for documentation

Definition at line 94 of file LALInspiralBankUtils.c.

◆ XLALInspiralTau3FromNonEqualMass()

REAL4 XLALInspiralTau3FromNonEqualMass ( REAL4  M,
REAL4  eta,
REAL4  fL 
)
See also
See Module LALInspiralBankUtils.c for documentation

Definition at line 113 of file LALInspiralBankUtils.c.

◆ XLALInspiralTau0FromMEta()

REAL4 XLALInspiralTau0FromMEta ( REAL4  M,
REAL4  eta,
REAL4  fL 
)
See also
See Module LALInspiralBankUtils.c for documentation

Definition at line 130 of file LALInspiralBankUtils.c.

◆ XLALInspiralMFromTau0AndNonEqualMass()

REAL8 XLALInspiralMFromTau0AndNonEqualMass ( REAL8  tau0,
REAL8  extremMass,
REAL8  fL 
)
See also
See Module LALInspiralBankUtils.c for documentation

Definition at line 150 of file LALInspiralBankUtils.c.